ข้ามไปที่เนื้อหาหลัก
หาค่า x, y
Tick mark Image
กราฟ

โจทย์ปัญหาที่คล้ายคลึงกันจากการค้นหาในเว็บ

แชร์

2x+5y=9,x-y=5
เมื่อต้องการแก้คู่สมการที่ใช้ตัวทดแทน ขั้นแรก หาค่าสมการหนึ่งในสมการของหนึ่งในตัวแปร จากนั้น แทนค่าผลลัพธ์ของตัวแปรที่อยู่ในอีกสมการหนึ่ง
2x+5y=9
เลือกสมการหนึ่งสมการ และหาค่าสำหรับ x โดยแยก x ทางด้านซ้ายของเครื่องหมายเท่ากับ
2x=-5y+9
ลบ 5y จากทั้งสองข้างของสมการ
x=\frac{1}{2}\left(-5y+9\right)
หารทั้งสองข้างด้วย 2
x=-\frac{5}{2}y+\frac{9}{2}
คูณ \frac{1}{2} ด้วย -5y+9
-\frac{5}{2}y+\frac{9}{2}-y=5
ทดแทน \frac{-5y+9}{2} สำหรับ x ในอีกสมการหนึ่ง x-y=5
-\frac{7}{2}y+\frac{9}{2}=5
เพิ่ม -\frac{5y}{2} ไปยัง -y
-\frac{7}{2}y=\frac{1}{2}
ลบ \frac{9}{2} จากทั้งสองข้างของสมการ
y=-\frac{1}{7}
หารทั้งสองข้างของสมการด้วย -\frac{7}{2} ซึ่งเหมือนกับการคูณทั้งสองข้างด้วยส่วนกลับของเศษส่วน
x=-\frac{5}{2}\left(-\frac{1}{7}\right)+\frac{9}{2}
ทดแทน -\frac{1}{7} สำหรับ y ใน x=-\frac{5}{2}y+\frac{9}{2} เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
x=\frac{5}{14}+\frac{9}{2}
คูณ -\frac{5}{2} ครั้ง -\frac{1}{7} โดยการคูณเศษด้วยเศษและคูณตัวส่วนด้วยส่วน แล้วลดเศษส่วนให้เป็นพจน์ต่ำสุดถ้าเป็นไปได้
x=\frac{34}{7}
เพิ่ม \frac{9}{2} ไปยัง \frac{5}{14} ด้วยการค้นหาตัวส่วนทั่วไปและเพิ่มตัวเศษ แล้ว ลดเศษส่วนให้เป็นพจน์ต่ำที่สุดถ้าเป็นไปได้
x=\frac{34}{7},y=-\frac{1}{7}
ระบบถูกแก้แล้วในขณะนี้
2x+5y=9,x-y=5
ทำสมการให้อยู่ในรูปแบบมาตรฐาน จากนั้นใช้เมทริกซ์แก้ระบบสมการ
\left(\begin{matrix}2&5\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\5\end{matrix}\right)
เขียนสมการในรูปแบบเมทริกซ์
inverse(\left(\begin{matrix}2&5\\1&-1\end{matrix}\right))\left(\begin{matrix}2&5\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&5\\1&-1\end{matrix}\right))\left(\begin{matrix}9\\5\end{matrix}\right)
คูณซ้ายสมการโดยเมทริกซ์ผกผันของ \left(\begin{matrix}2&5\\1&-1\end{matrix}\right)
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&5\\1&-1\end{matrix}\right))\left(\begin{matrix}9\\5\end{matrix}\right)
ผลคูณของเมทริกซ์และค่าผกผันของเมทริกซ์คือเมทริกซ์เอกลักษณ์
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&5\\1&-1\end{matrix}\right))\left(\begin{matrix}9\\5\end{matrix}\right)
คูณเมทริกซ์ทางด้านซ้ายของเครื่องหมายเท่ากับ
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2\left(-1\right)-5}&-\frac{5}{2\left(-1\right)-5}\\-\frac{1}{2\left(-1\right)-5}&\frac{2}{2\left(-1\right)-5}\end{matrix}\right)\left(\begin{matrix}9\\5\end{matrix}\right)
สําหรับเมทริกซ์ 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) เมทริกซ์ผกผันคือ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ดังนั้นสมการเมทริกซ์สามารถเขียนใหม่เป็นปัญหาการคูณเมทริกซ์ได้
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}&\frac{5}{7}\\\frac{1}{7}&-\frac{2}{7}\end{matrix}\right)\left(\begin{matrix}9\\5\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}\times 9+\frac{5}{7}\times 5\\\frac{1}{7}\times 9-\frac{2}{7}\times 5\end{matrix}\right)
คูณเมทริกซ์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{34}{7}\\-\frac{1}{7}\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
x=\frac{34}{7},y=-\frac{1}{7}
แยกเมทริกซ์องค์ประกอบ x และ y
2x+5y=9,x-y=5
เพื่อที่จะแก้ไขได้โดยการตัดออก สัมประสิทธิ์ของตัวแปรหนึ่งต้องเหมือนกันในทั้งสองสมการเพื่อให้ตัวแปรถูกตัดเมื่อสมการหนึ่งถูกลบออกจากอีกสมการ
2x+5y=9,2x+2\left(-1\right)y=2\times 5
เพื่อทำให้ 2x และ x เท่ากัน คูณพจน์ทั้งหมดบนแต่ละข้างของสมการแรกด้วย 1 และพจน์ทั้งหมดในแต่ละด้านของสมการที่สองด้วย 2
2x+5y=9,2x-2y=10
ทำให้ง่ายขึ้น
2x-2x+5y+2y=9-10
ลบ 2x-2y=10 จาก 2x+5y=9 โดยลบพจน์ที่เหมือนกันบนแต่ละข้างของเครื่องหมายเท่ากับ
5y+2y=9-10
เพิ่ม 2x ไปยัง -2x ตัดพจน์ 2x และ -2x ทำให้สมการเหลือตัวแปรเดียวเท่านั้นที่สามารถแก้ไขได้
7y=9-10
เพิ่ม 5y ไปยัง 2y
7y=-1
เพิ่ม 9 ไปยัง -10
y=-\frac{1}{7}
หารทั้งสองข้างด้วย 7
x-\left(-\frac{1}{7}\right)=5
ทดแทน -\frac{1}{7} สำหรับ y ใน x-y=5 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
x=\frac{34}{7}
ลบ \frac{1}{7} จากทั้งสองข้างของสมการ
x=\frac{34}{7},y=-\frac{1}{7}
ระบบถูกแก้แล้วในขณะนี้