ข้ามไปที่เนื้อหาหลัก
หาค่า x, y
Tick mark Image
กราฟ

โจทย์ปัญหาที่คล้ายคลึงกันจากการค้นหาในเว็บ

แชร์

x+y=50,10x+20y=500
เมื่อต้องการแก้คู่สมการที่ใช้ตัวทดแทน ขั้นแรก หาค่าสมการหนึ่งในสมการของหนึ่งในตัวแปร จากนั้น แทนค่าผลลัพธ์ของตัวแปรที่อยู่ในอีกสมการหนึ่ง
x+y=50
เลือกสมการหนึ่งสมการ และหาค่าสำหรับ x โดยแยก x ทางด้านซ้ายของเครื่องหมายเท่ากับ
x=-y+50
ลบ y จากทั้งสองข้างของสมการ
10\left(-y+50\right)+20y=500
ทดแทน -y+50 สำหรับ x ในอีกสมการหนึ่ง 10x+20y=500
-10y+500+20y=500
คูณ 10 ด้วย -y+50
10y+500=500
เพิ่ม -10y ไปยัง 20y
10y=0
ลบ 500 จากทั้งสองข้างของสมการ
y=0
หารทั้งสองข้างด้วย 10
x=50
ทดแทน 0 สำหรับ y ใน x=-y+50 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
x=50,y=0
ระบบถูกแก้แล้วในขณะนี้
x+y=50,10x+20y=500
ทำสมการให้อยู่ในรูปแบบมาตรฐาน จากนั้นใช้เมทริกซ์แก้ระบบสมการ
\left(\begin{matrix}1&1\\10&20\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}50\\500\end{matrix}\right)
เขียนสมการในรูปแบบเมทริกซ์
inverse(\left(\begin{matrix}1&1\\10&20\end{matrix}\right))\left(\begin{matrix}1&1\\10&20\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\10&20\end{matrix}\right))\left(\begin{matrix}50\\500\end{matrix}\right)
คูณซ้ายสมการโดยเมทริกซ์ผกผันของ \left(\begin{matrix}1&1\\10&20\end{matrix}\right)
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\10&20\end{matrix}\right))\left(\begin{matrix}50\\500\end{matrix}\right)
ผลคูณของเมทริกซ์และค่าผกผันของเมทริกซ์คือเมทริกซ์เอกลักษณ์
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\10&20\end{matrix}\right))\left(\begin{matrix}50\\500\end{matrix}\right)
คูณเมทริกซ์ทางด้านซ้ายของเครื่องหมายเท่ากับ
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{20}{20-10}&-\frac{1}{20-10}\\-\frac{10}{20-10}&\frac{1}{20-10}\end{matrix}\right)\left(\begin{matrix}50\\500\end{matrix}\right)
สําหรับเมทริกซ์ 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) เมทริกซ์ผกผันคือ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ดังนั้นสมการเมทริกซ์สามารถเขียนใหม่เป็นปัญหาการคูณเมทริกซ์ได้
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2&-\frac{1}{10}\\-1&\frac{1}{10}\end{matrix}\right)\left(\begin{matrix}50\\500\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\times 50-\frac{1}{10}\times 500\\-50+\frac{1}{10}\times 500\end{matrix}\right)
คูณเมทริกซ์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}50\\0\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
x=50,y=0
แยกเมทริกซ์องค์ประกอบ x และ y
x+y=50,10x+20y=500
เพื่อที่จะแก้ไขได้โดยการตัดออก สัมประสิทธิ์ของตัวแปรหนึ่งต้องเหมือนกันในทั้งสองสมการเพื่อให้ตัวแปรถูกตัดเมื่อสมการหนึ่งถูกลบออกจากอีกสมการ
10x+10y=10\times 50,10x+20y=500
เพื่อทำให้ x และ 10x เท่ากัน คูณพจน์ทั้งหมดบนแต่ละข้างของสมการแรกด้วย 10 และพจน์ทั้งหมดในแต่ละด้านของสมการที่สองด้วย 1
10x+10y=500,10x+20y=500
ทำให้ง่ายขึ้น
10x-10x+10y-20y=500-500
ลบ 10x+20y=500 จาก 10x+10y=500 โดยลบพจน์ที่เหมือนกันบนแต่ละข้างของเครื่องหมายเท่ากับ
10y-20y=500-500
เพิ่ม 10x ไปยัง -10x ตัดพจน์ 10x และ -10x ทำให้สมการเหลือตัวแปรเดียวเท่านั้นที่สามารถแก้ไขได้
-10y=500-500
เพิ่ม 10y ไปยัง -20y
-10y=0
เพิ่ม 500 ไปยัง -500
y=0
หารทั้งสองข้างด้วย -10
10x=500
ทดแทน 0 สำหรับ y ใน 10x+20y=500 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
x=50
หารทั้งสองข้างด้วย 10
x=50,y=0
ระบบถูกแก้แล้วในขณะนี้