ข้ามไปที่เนื้อหาหลัก
หาค่า x, y
Tick mark Image
กราฟ

โจทย์ปัญหาที่คล้ายคลึงกันจากการค้นหาในเว็บ

แชร์

x+2y=7,4x+3y=3
เมื่อต้องการแก้คู่สมการที่ใช้ตัวทดแทน ขั้นแรก หาค่าสมการหนึ่งในสมการของหนึ่งในตัวแปร จากนั้น แทนค่าผลลัพธ์ของตัวแปรที่อยู่ในอีกสมการหนึ่ง
x+2y=7
เลือกสมการหนึ่งสมการ และหาค่าสำหรับ x โดยแยก x ทางด้านซ้ายของเครื่องหมายเท่ากับ
x=-2y+7
ลบ 2y จากทั้งสองข้างของสมการ
4\left(-2y+7\right)+3y=3
ทดแทน -2y+7 สำหรับ x ในอีกสมการหนึ่ง 4x+3y=3
-8y+28+3y=3
คูณ 4 ด้วย -2y+7
-5y+28=3
เพิ่ม -8y ไปยัง 3y
-5y=-25
ลบ 28 จากทั้งสองข้างของสมการ
y=5
หารทั้งสองข้างด้วย -5
x=-2\times 5+7
ทดแทน 5 สำหรับ y ใน x=-2y+7 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
x=-10+7
คูณ -2 ด้วย 5
x=-3
เพิ่ม 7 ไปยัง -10
x=-3,y=5
ระบบถูกแก้แล้วในขณะนี้
x+2y=7,4x+3y=3
ทำสมการให้อยู่ในรูปแบบมาตรฐาน จากนั้นใช้เมทริกซ์แก้ระบบสมการ
\left(\begin{matrix}1&2\\4&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\3\end{matrix}\right)
เขียนสมการในรูปแบบเมทริกซ์
inverse(\left(\begin{matrix}1&2\\4&3\end{matrix}\right))\left(\begin{matrix}1&2\\4&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\4&3\end{matrix}\right))\left(\begin{matrix}7\\3\end{matrix}\right)
คูณซ้ายสมการโดยเมทริกซ์ผกผันของ \left(\begin{matrix}1&2\\4&3\end{matrix}\right)
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\4&3\end{matrix}\right))\left(\begin{matrix}7\\3\end{matrix}\right)
ผลคูณของเมทริกซ์และค่าผกผันของเมทริกซ์คือเมทริกซ์เอกลักษณ์
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\4&3\end{matrix}\right))\left(\begin{matrix}7\\3\end{matrix}\right)
คูณเมทริกซ์ทางด้านซ้ายของเครื่องหมายเท่ากับ
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3-2\times 4}&-\frac{2}{3-2\times 4}\\-\frac{4}{3-2\times 4}&\frac{1}{3-2\times 4}\end{matrix}\right)\left(\begin{matrix}7\\3\end{matrix}\right)
สําหรับเมทริกซ์ 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) เมทริกซ์ผกผันคือ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ดังนั้นสมการเมทริกซ์สามารถเขียนใหม่เป็นปัญหาการคูณเมทริกซ์ได้
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{5}&\frac{2}{5}\\\frac{4}{5}&-\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}7\\3\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{5}\times 7+\frac{2}{5}\times 3\\\frac{4}{5}\times 7-\frac{1}{5}\times 3\end{matrix}\right)
คูณเมทริกซ์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\5\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
x=-3,y=5
แยกเมทริกซ์องค์ประกอบ x และ y
x+2y=7,4x+3y=3
เพื่อที่จะแก้ไขได้โดยการตัดออก สัมประสิทธิ์ของตัวแปรหนึ่งต้องเหมือนกันในทั้งสองสมการเพื่อให้ตัวแปรถูกตัดเมื่อสมการหนึ่งถูกลบออกจากอีกสมการ
4x+4\times 2y=4\times 7,4x+3y=3
เพื่อทำให้ x และ 4x เท่ากัน คูณพจน์ทั้งหมดบนแต่ละข้างของสมการแรกด้วย 4 และพจน์ทั้งหมดในแต่ละด้านของสมการที่สองด้วย 1
4x+8y=28,4x+3y=3
ทำให้ง่ายขึ้น
4x-4x+8y-3y=28-3
ลบ 4x+3y=3 จาก 4x+8y=28 โดยลบพจน์ที่เหมือนกันบนแต่ละข้างของเครื่องหมายเท่ากับ
8y-3y=28-3
เพิ่ม 4x ไปยัง -4x ตัดพจน์ 4x และ -4x ทำให้สมการเหลือตัวแปรเดียวเท่านั้นที่สามารถแก้ไขได้
5y=28-3
เพิ่ม 8y ไปยัง -3y
5y=25
เพิ่ม 28 ไปยัง -3
y=5
หารทั้งสองข้างด้วย 5
4x+3\times 5=3
ทดแทน 5 สำหรับ y ใน 4x+3y=3 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
4x+15=3
คูณ 3 ด้วย 5
4x=-12
ลบ 15 จากทั้งสองข้างของสมการ
x=-3
หารทั้งสองข้างด้วย 4
x=-3,y=5
ระบบถูกแก้แล้วในขณะนี้