\left\{ \begin{array} { l } { x + 2 y = 0 } \\ { 5 x + 7 y = 3 } \end{array} \right.
หาค่า x, y
x=2
y=-1
กราฟ
แชร์
คัดลอกไปยังคลิปบอร์ดแล้ว
x+2y=0,5x+7y=3
เมื่อต้องการแก้คู่สมการที่ใช้ตัวทดแทน ขั้นแรก หาค่าสมการหนึ่งในสมการของหนึ่งในตัวแปร จากนั้น แทนค่าผลลัพธ์ของตัวแปรที่อยู่ในอีกสมการหนึ่ง
x+2y=0
เลือกสมการหนึ่งสมการ และหาค่าสำหรับ x โดยแยก x ทางด้านซ้ายของเครื่องหมายเท่ากับ
x=-2y
ลบ 2y จากทั้งสองข้างของสมการ
5\left(-2\right)y+7y=3
ทดแทน -2y สำหรับ x ในอีกสมการหนึ่ง 5x+7y=3
-10y+7y=3
คูณ 5 ด้วย -2y
-3y=3
เพิ่ม -10y ไปยัง 7y
y=-1
หารทั้งสองข้างด้วย -3
x=-2\left(-1\right)
ทดแทน -1 สำหรับ y ใน x=-2y เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
x=2
คูณ -2 ด้วย -1
x=2,y=-1
ระบบถูกแก้แล้วในขณะนี้
x+2y=0,5x+7y=3
ทำสมการให้อยู่ในรูปแบบมาตรฐาน จากนั้นใช้เมทริกซ์แก้ระบบสมการ
\left(\begin{matrix}1&2\\5&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\3\end{matrix}\right)
เขียนสมการในรูปแบบเมทริกซ์
inverse(\left(\begin{matrix}1&2\\5&7\end{matrix}\right))\left(\begin{matrix}1&2\\5&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\5&7\end{matrix}\right))\left(\begin{matrix}0\\3\end{matrix}\right)
คูณซ้ายสมการโดยเมทริกซ์ผกผันของ \left(\begin{matrix}1&2\\5&7\end{matrix}\right)
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\5&7\end{matrix}\right))\left(\begin{matrix}0\\3\end{matrix}\right)
ผลคูณของเมทริกซ์และค่าผกผันของเมทริกซ์คือเมทริกซ์เอกลักษณ์
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\5&7\end{matrix}\right))\left(\begin{matrix}0\\3\end{matrix}\right)
คูณเมทริกซ์ทางด้านซ้ายของเครื่องหมายเท่ากับ
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{7-2\times 5}&-\frac{2}{7-2\times 5}\\-\frac{5}{7-2\times 5}&\frac{1}{7-2\times 5}\end{matrix}\right)\left(\begin{matrix}0\\3\end{matrix}\right)
สําหรับเมทริกซ์ 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) เมทริกซ์ผกผันคือ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ดังนั้นสมการเมทริกซ์สามารถเขียนใหม่เป็นปัญหาการคูณเมทริกซ์ได้
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{7}{3}&\frac{2}{3}\\\frac{5}{3}&-\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}0\\3\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}\times 3\\-\frac{1}{3}\times 3\end{matrix}\right)
คูณเมทริกซ์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\-1\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
x=2,y=-1
แยกเมทริกซ์องค์ประกอบ x และ y
x+2y=0,5x+7y=3
เพื่อที่จะแก้ไขได้โดยการตัดออก สัมประสิทธิ์ของตัวแปรหนึ่งต้องเหมือนกันในทั้งสองสมการเพื่อให้ตัวแปรถูกตัดเมื่อสมการหนึ่งถูกลบออกจากอีกสมการ
5x+5\times 2y=0,5x+7y=3
เพื่อทำให้ x และ 5x เท่ากัน คูณพจน์ทั้งหมดบนแต่ละข้างของสมการแรกด้วย 5 และพจน์ทั้งหมดในแต่ละด้านของสมการที่สองด้วย 1
5x+10y=0,5x+7y=3
ทำให้ง่ายขึ้น
5x-5x+10y-7y=-3
ลบ 5x+7y=3 จาก 5x+10y=0 โดยลบพจน์ที่เหมือนกันบนแต่ละข้างของเครื่องหมายเท่ากับ
10y-7y=-3
เพิ่ม 5x ไปยัง -5x ตัดพจน์ 5x และ -5x ทำให้สมการเหลือตัวแปรเดียวเท่านั้นที่สามารถแก้ไขได้
3y=-3
เพิ่ม 10y ไปยัง -7y
y=-1
หารทั้งสองข้างด้วย 3
5x+7\left(-1\right)=3
ทดแทน -1 สำหรับ y ใน 5x+7y=3 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
5x-7=3
คูณ 7 ด้วย -1
5x=10
เพิ่ม 7 ไปยังทั้งสองข้างของสมการ
x=2
หารทั้งสองข้างด้วย 5
x=2,y=-1
ระบบถูกแก้แล้วในขณะนี้
ตัวอย่าง
สมการกำลังสอง
{ x } ^ { 2 } - 4 x - 5 = 0
ตรีโกณมิติ
4 \sin \theta \cos \theta = 2 \sin \theta
สมการเชิงเส้น
y = 3x + 4
เลขคณิต
699 * 533
เมทริกซ์
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
สมการหลายชั้น
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
การหาอนุพันธ์
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
การหาปริพันธ์
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ลิมิต
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}