\left\{ \begin{array} { l } { x + 2 y = 0 } \\ { 5 x + 2 y = 3 } \end{array} \right.
หาค่า x, y
x=\frac{3}{4}=0.75
y=-\frac{3}{8}=-0.375
กราฟ
แชร์
คัดลอกไปยังคลิปบอร์ดแล้ว
x+2y=0,5x+2y=3
เมื่อต้องการแก้คู่สมการที่ใช้ตัวทดแทน ขั้นแรก หาค่าสมการหนึ่งในสมการของหนึ่งในตัวแปร จากนั้น แทนค่าผลลัพธ์ของตัวแปรที่อยู่ในอีกสมการหนึ่ง
x+2y=0
เลือกสมการหนึ่งสมการ และหาค่าสำหรับ x โดยแยก x ทางด้านซ้ายของเครื่องหมายเท่ากับ
x=-2y
ลบ 2y จากทั้งสองข้างของสมการ
5\left(-2\right)y+2y=3
ทดแทน -2y สำหรับ x ในอีกสมการหนึ่ง 5x+2y=3
-10y+2y=3
คูณ 5 ด้วย -2y
-8y=3
เพิ่ม -10y ไปยัง 2y
y=-\frac{3}{8}
หารทั้งสองข้างด้วย -8
x=-2\left(-\frac{3}{8}\right)
ทดแทน -\frac{3}{8} สำหรับ y ใน x=-2y เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
x=\frac{3}{4}
คูณ -2 ด้วย -\frac{3}{8}
x=\frac{3}{4},y=-\frac{3}{8}
ระบบถูกแก้แล้วในขณะนี้
x+2y=0,5x+2y=3
ทำสมการให้อยู่ในรูปแบบมาตรฐาน จากนั้นใช้เมทริกซ์แก้ระบบสมการ
\left(\begin{matrix}1&2\\5&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\3\end{matrix}\right)
เขียนสมการในรูปแบบเมทริกซ์
inverse(\left(\begin{matrix}1&2\\5&2\end{matrix}\right))\left(\begin{matrix}1&2\\5&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\5&2\end{matrix}\right))\left(\begin{matrix}0\\3\end{matrix}\right)
คูณซ้ายสมการโดยเมทริกซ์ผกผันของ \left(\begin{matrix}1&2\\5&2\end{matrix}\right)
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\5&2\end{matrix}\right))\left(\begin{matrix}0\\3\end{matrix}\right)
ผลคูณของเมทริกซ์และค่าผกผันของเมทริกซ์คือเมทริกซ์เอกลักษณ์
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\5&2\end{matrix}\right))\left(\begin{matrix}0\\3\end{matrix}\right)
คูณเมทริกซ์ทางด้านซ้ายของเครื่องหมายเท่ากับ
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2-2\times 5}&-\frac{2}{2-2\times 5}\\-\frac{5}{2-2\times 5}&\frac{1}{2-2\times 5}\end{matrix}\right)\left(\begin{matrix}0\\3\end{matrix}\right)
สําหรับเมทริกซ์ 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) เมทริกซ์ผกผันคือ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ดังนั้นสมการเมทริกซ์สามารถเขียนใหม่เป็นปัญหาการคูณเมทริกซ์ได้
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}&\frac{1}{4}\\\frac{5}{8}&-\frac{1}{8}\end{matrix}\right)\left(\begin{matrix}0\\3\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\times 3\\-\frac{1}{8}\times 3\end{matrix}\right)
คูณเมทริกซ์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{4}\\-\frac{3}{8}\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
x=\frac{3}{4},y=-\frac{3}{8}
แยกเมทริกซ์องค์ประกอบ x และ y
x+2y=0,5x+2y=3
เพื่อที่จะแก้ไขได้โดยการตัดออก สัมประสิทธิ์ของตัวแปรหนึ่งต้องเหมือนกันในทั้งสองสมการเพื่อให้ตัวแปรถูกตัดเมื่อสมการหนึ่งถูกลบออกจากอีกสมการ
x-5x+2y-2y=-3
ลบ 5x+2y=3 จาก x+2y=0 โดยลบพจน์ที่เหมือนกันบนแต่ละข้างของเครื่องหมายเท่ากับ
x-5x=-3
เพิ่ม 2y ไปยัง -2y ตัดพจน์ 2y และ -2y ทำให้สมการเหลือตัวแปรเดียวเท่านั้นที่สามารถแก้ไขได้
-4x=-3
เพิ่ม x ไปยัง -5x
x=\frac{3}{4}
หารทั้งสองข้างด้วย -4
5\times \frac{3}{4}+2y=3
ทดแทน \frac{3}{4} สำหรับ x ใน 5x+2y=3 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า y โดยตรงได้
\frac{15}{4}+2y=3
คูณ 5 ด้วย \frac{3}{4}
2y=-\frac{3}{4}
ลบ \frac{15}{4} จากทั้งสองข้างของสมการ
y=-\frac{3}{8}
หารทั้งสองข้างด้วย 2
x=\frac{3}{4},y=-\frac{3}{8}
ระบบถูกแก้แล้วในขณะนี้
ตัวอย่าง
สมการกำลังสอง
{ x } ^ { 2 } - 4 x - 5 = 0
ตรีโกณมิติ
4 \sin \theta \cos \theta = 2 \sin \theta
สมการเชิงเส้น
y = 3x + 4
เลขคณิต
699 * 533
เมทริกซ์
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
สมการหลายชั้น
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
การหาอนุพันธ์
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
การหาปริพันธ์
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ลิมิต
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}