\left\{ \begin{array} { l } { 6 x - y = - 1 } \\ { 6 x + y = - 1 } \end{array} \right.
หาค่า x, y
x=-\frac{1}{6}\approx -0.166666667
y=0
กราฟ
แชร์
คัดลอกไปยังคลิปบอร์ดแล้ว
6x-y=-1,6x+y=-1
เมื่อต้องการแก้คู่สมการที่ใช้ตัวทดแทน ขั้นแรก หาค่าสมการหนึ่งในสมการของหนึ่งในตัวแปร จากนั้น แทนค่าผลลัพธ์ของตัวแปรที่อยู่ในอีกสมการหนึ่ง
6x-y=-1
เลือกสมการหนึ่งสมการ และหาค่าสำหรับ x โดยแยก x ทางด้านซ้ายของเครื่องหมายเท่ากับ
6x=y-1
เพิ่ม y ไปยังทั้งสองข้างของสมการ
x=\frac{1}{6}\left(y-1\right)
หารทั้งสองข้างด้วย 6
x=\frac{1}{6}y-\frac{1}{6}
คูณ \frac{1}{6} ด้วย y-1
6\left(\frac{1}{6}y-\frac{1}{6}\right)+y=-1
ทดแทน \frac{-1+y}{6} สำหรับ x ในอีกสมการหนึ่ง 6x+y=-1
y-1+y=-1
คูณ 6 ด้วย \frac{-1+y}{6}
2y-1=-1
เพิ่ม y ไปยัง y
2y=0
เพิ่ม 1 ไปยังทั้งสองข้างของสมการ
y=0
หารทั้งสองข้างด้วย 2
x=-\frac{1}{6}
ทดแทน 0 สำหรับ y ใน x=\frac{1}{6}y-\frac{1}{6} เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
x=-\frac{1}{6},y=0
ระบบถูกแก้แล้วในขณะนี้
6x-y=-1,6x+y=-1
ทำสมการให้อยู่ในรูปแบบมาตรฐาน จากนั้นใช้เมทริกซ์แก้ระบบสมการ
\left(\begin{matrix}6&-1\\6&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\-1\end{matrix}\right)
เขียนสมการในรูปแบบเมทริกซ์
inverse(\left(\begin{matrix}6&-1\\6&1\end{matrix}\right))\left(\begin{matrix}6&-1\\6&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&-1\\6&1\end{matrix}\right))\left(\begin{matrix}-1\\-1\end{matrix}\right)
คูณซ้ายสมการโดยเมทริกซ์ผกผันของ \left(\begin{matrix}6&-1\\6&1\end{matrix}\right)
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&-1\\6&1\end{matrix}\right))\left(\begin{matrix}-1\\-1\end{matrix}\right)
ผลคูณของเมทริกซ์และค่าผกผันของเมทริกซ์คือเมทริกซ์เอกลักษณ์
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&-1\\6&1\end{matrix}\right))\left(\begin{matrix}-1\\-1\end{matrix}\right)
คูณเมทริกซ์ทางด้านซ้ายของเครื่องหมายเท่ากับ
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6-\left(-6\right)}&-\frac{-1}{6-\left(-6\right)}\\-\frac{6}{6-\left(-6\right)}&\frac{6}{6-\left(-6\right)}\end{matrix}\right)\left(\begin{matrix}-1\\-1\end{matrix}\right)
สําหรับเมทริกซ์ 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) เมทริกซ์ผกผันคือ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ดังนั้นสมการเมทริกซ์สามารถเขียนใหม่เป็นปัญหาการคูณเมทริกซ์ได้
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{12}&\frac{1}{12}\\-\frac{1}{2}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}-1\\-1\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{12}\left(-1\right)+\frac{1}{12}\left(-1\right)\\-\frac{1}{2}\left(-1\right)+\frac{1}{2}\left(-1\right)\end{matrix}\right)
คูณเมทริกซ์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{6}\\0\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
x=-\frac{1}{6},y=0
แยกเมทริกซ์องค์ประกอบ x และ y
6x-y=-1,6x+y=-1
เพื่อที่จะแก้ไขได้โดยการตัดออก สัมประสิทธิ์ของตัวแปรหนึ่งต้องเหมือนกันในทั้งสองสมการเพื่อให้ตัวแปรถูกตัดเมื่อสมการหนึ่งถูกลบออกจากอีกสมการ
6x-6x-y-y=-1+1
ลบ 6x+y=-1 จาก 6x-y=-1 โดยลบพจน์ที่เหมือนกันบนแต่ละข้างของเครื่องหมายเท่ากับ
-y-y=-1+1
เพิ่ม 6x ไปยัง -6x ตัดพจน์ 6x และ -6x ทำให้สมการเหลือตัวแปรเดียวเท่านั้นที่สามารถแก้ไขได้
-2y=-1+1
เพิ่ม -y ไปยัง -y
-2y=0
เพิ่ม -1 ไปยัง 1
y=0
หารทั้งสองข้างด้วย -2
6x=-1
ทดแทน 0 สำหรับ y ใน 6x+y=-1 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
x=-\frac{1}{6}
หารทั้งสองข้างด้วย 6
x=-\frac{1}{6},y=0
ระบบถูกแก้แล้วในขณะนี้
ตัวอย่าง
สมการกำลังสอง
{ x } ^ { 2 } - 4 x - 5 = 0
ตรีโกณมิติ
4 \sin \theta \cos \theta = 2 \sin \theta
สมการเชิงเส้น
y = 3x + 4
เลขคณิต
699 * 533
เมทริกซ์
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
สมการหลายชั้น
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
การหาอนุพันธ์
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
การหาปริพันธ์
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ลิมิต
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}