ข้ามไปที่เนื้อหาหลัก
หาค่า x, y
Tick mark Image
กราฟ

โจทย์ปัญหาที่คล้ายคลึงกันจากการค้นหาในเว็บ

แชร์

2x+3y=-1,4x+y=3
เมื่อต้องการแก้คู่สมการที่ใช้ตัวทดแทน ขั้นแรก หาค่าสมการหนึ่งในสมการของหนึ่งในตัวแปร จากนั้น แทนค่าผลลัพธ์ของตัวแปรที่อยู่ในอีกสมการหนึ่ง
2x+3y=-1
เลือกสมการหนึ่งสมการ และหาค่าสำหรับ x โดยแยก x ทางด้านซ้ายของเครื่องหมายเท่ากับ
2x=-3y-1
ลบ 3y จากทั้งสองข้างของสมการ
x=\frac{1}{2}\left(-3y-1\right)
หารทั้งสองข้างด้วย 2
x=-\frac{3}{2}y-\frac{1}{2}
คูณ \frac{1}{2} ด้วย -3y-1
4\left(-\frac{3}{2}y-\frac{1}{2}\right)+y=3
ทดแทน \frac{-3y-1}{2} สำหรับ x ในอีกสมการหนึ่ง 4x+y=3
-6y-2+y=3
คูณ 4 ด้วย \frac{-3y-1}{2}
-5y-2=3
เพิ่ม -6y ไปยัง y
-5y=5
เพิ่ม 2 ไปยังทั้งสองข้างของสมการ
y=-1
หารทั้งสองข้างด้วย -5
x=-\frac{3}{2}\left(-1\right)-\frac{1}{2}
ทดแทน -1 สำหรับ y ใน x=-\frac{3}{2}y-\frac{1}{2} เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
x=\frac{3-1}{2}
คูณ -\frac{3}{2} ด้วย -1
x=1
เพิ่ม -\frac{1}{2} ไปยัง \frac{3}{2} ด้วยการค้นหาตัวส่วนทั่วไปและเพิ่มตัวเศษ แล้ว ลดเศษส่วนให้เป็นพจน์ต่ำที่สุดถ้าเป็นไปได้
x=1,y=-1
ระบบถูกแก้แล้วในขณะนี้
2x+3y=-1,4x+y=3
ทำสมการให้อยู่ในรูปแบบมาตรฐาน จากนั้นใช้เมทริกซ์แก้ระบบสมการ
\left(\begin{matrix}2&3\\4&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\3\end{matrix}\right)
เขียนสมการในรูปแบบเมทริกซ์
inverse(\left(\begin{matrix}2&3\\4&1\end{matrix}\right))\left(\begin{matrix}2&3\\4&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\4&1\end{matrix}\right))\left(\begin{matrix}-1\\3\end{matrix}\right)
คูณซ้ายสมการโดยเมทริกซ์ผกผันของ \left(\begin{matrix}2&3\\4&1\end{matrix}\right)
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\4&1\end{matrix}\right))\left(\begin{matrix}-1\\3\end{matrix}\right)
ผลคูณของเมทริกซ์และค่าผกผันของเมทริกซ์คือเมทริกซ์เอกลักษณ์
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\4&1\end{matrix}\right))\left(\begin{matrix}-1\\3\end{matrix}\right)
คูณเมทริกซ์ทางด้านซ้ายของเครื่องหมายเท่ากับ
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2-3\times 4}&-\frac{3}{2-3\times 4}\\-\frac{4}{2-3\times 4}&\frac{2}{2-3\times 4}\end{matrix}\right)\left(\begin{matrix}-1\\3\end{matrix}\right)
สําหรับเมทริกซ์ 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) เมทริกซ์ผกผันคือ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ดังนั้นสมการเมทริกซ์สามารถเขียนใหม่เป็นปัญหาการคูณเมทริกซ์ได้
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{10}&\frac{3}{10}\\\frac{2}{5}&-\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}-1\\3\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{10}\left(-1\right)+\frac{3}{10}\times 3\\\frac{2}{5}\left(-1\right)-\frac{1}{5}\times 3\end{matrix}\right)
คูณเมทริกซ์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-1\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
x=1,y=-1
แยกเมทริกซ์องค์ประกอบ x และ y
2x+3y=-1,4x+y=3
เพื่อที่จะแก้ไขได้โดยการตัดออก สัมประสิทธิ์ของตัวแปรหนึ่งต้องเหมือนกันในทั้งสองสมการเพื่อให้ตัวแปรถูกตัดเมื่อสมการหนึ่งถูกลบออกจากอีกสมการ
4\times 2x+4\times 3y=4\left(-1\right),2\times 4x+2y=2\times 3
เพื่อทำให้ 2x และ 4x เท่ากัน คูณพจน์ทั้งหมดบนแต่ละข้างของสมการแรกด้วย 4 และพจน์ทั้งหมดในแต่ละด้านของสมการที่สองด้วย 2
8x+12y=-4,8x+2y=6
ทำให้ง่ายขึ้น
8x-8x+12y-2y=-4-6
ลบ 8x+2y=6 จาก 8x+12y=-4 โดยลบพจน์ที่เหมือนกันบนแต่ละข้างของเครื่องหมายเท่ากับ
12y-2y=-4-6
เพิ่ม 8x ไปยัง -8x ตัดพจน์ 8x และ -8x ทำให้สมการเหลือตัวแปรเดียวเท่านั้นที่สามารถแก้ไขได้
10y=-4-6
เพิ่ม 12y ไปยัง -2y
10y=-10
เพิ่ม -4 ไปยัง -6
y=-1
หารทั้งสองข้างด้วย 10
4x-1=3
ทดแทน -1 สำหรับ y ใน 4x+y=3 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
4x=4
เพิ่ม 1 ไปยังทั้งสองข้างของสมการ
x=1
หารทั้งสองข้างด้วย 4
x=1,y=-1
ระบบถูกแก้แล้วในขณะนี้