ข้ามไปที่เนื้อหาหลัก
หาค่า x, y
Tick mark Image
กราฟ

โจทย์ปัญหาที่คล้ายคลึงกันจากการค้นหาในเว็บ

แชร์

-x+2y=0,2x-3y+1=0
เมื่อต้องการแก้คู่สมการที่ใช้ตัวทดแทน ขั้นแรก หาค่าสมการหนึ่งในสมการของหนึ่งในตัวแปร จากนั้น แทนค่าผลลัพธ์ของตัวแปรที่อยู่ในอีกสมการหนึ่ง
-x+2y=0
เลือกสมการหนึ่งสมการ และหาค่าสำหรับ x โดยแยก x ทางด้านซ้ายของเครื่องหมายเท่ากับ
-x=-2y
ลบ 2y จากทั้งสองข้างของสมการ
x=-\left(-2\right)y
หารทั้งสองข้างด้วย -1
x=2y
คูณ -1 ด้วย -2y
2\times 2y-3y+1=0
ทดแทน 2y สำหรับ x ในอีกสมการหนึ่ง 2x-3y+1=0
4y-3y+1=0
คูณ 2 ด้วย 2y
y+1=0
เพิ่ม 4y ไปยัง -3y
y=-1
ลบ 1 จากทั้งสองข้างของสมการ
x=2\left(-1\right)
ทดแทน -1 สำหรับ y ใน x=2y เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
x=-2
คูณ 2 ด้วย -1
x=-2,y=-1
ระบบถูกแก้แล้วในขณะนี้
-x+2y=0,2x-3y+1=0
ทำสมการให้อยู่ในรูปแบบมาตรฐาน จากนั้นใช้เมทริกซ์แก้ระบบสมการ
\left(\begin{matrix}-1&2\\2&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\-1\end{matrix}\right)
เขียนสมการในรูปแบบเมทริกซ์
inverse(\left(\begin{matrix}-1&2\\2&-3\end{matrix}\right))\left(\begin{matrix}-1&2\\2&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&2\\2&-3\end{matrix}\right))\left(\begin{matrix}0\\-1\end{matrix}\right)
คูณซ้ายสมการโดยเมทริกซ์ผกผันของ \left(\begin{matrix}-1&2\\2&-3\end{matrix}\right)
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&2\\2&-3\end{matrix}\right))\left(\begin{matrix}0\\-1\end{matrix}\right)
ผลคูณของเมทริกซ์และค่าผกผันของเมทริกซ์คือเมทริกซ์เอกลักษณ์
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&2\\2&-3\end{matrix}\right))\left(\begin{matrix}0\\-1\end{matrix}\right)
คูณเมทริกซ์ทางด้านซ้ายของเครื่องหมายเท่ากับ
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{-\left(-3\right)-2\times 2}&-\frac{2}{-\left(-3\right)-2\times 2}\\-\frac{2}{-\left(-3\right)-2\times 2}&-\frac{1}{-\left(-3\right)-2\times 2}\end{matrix}\right)\left(\begin{matrix}0\\-1\end{matrix}\right)
สําหรับเมทริกซ์ 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) เมทริกซ์ผกผันคือ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ดังนั้นสมการเมทริกซ์สามารถเขียนใหม่เป็นปัญหาการคูณเมทริกซ์ได้
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3&2\\2&1\end{matrix}\right)\left(\begin{matrix}0\\-1\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\left(-1\right)\\-1\end{matrix}\right)
คูณเมทริกซ์
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\-1\end{matrix}\right)
ดำเนินการทางคณิตศาสตร์
x=-2,y=-1
แยกเมทริกซ์องค์ประกอบ x และ y
-x+2y=0,2x-3y+1=0
เพื่อที่จะแก้ไขได้โดยการตัดออก สัมประสิทธิ์ของตัวแปรหนึ่งต้องเหมือนกันในทั้งสองสมการเพื่อให้ตัวแปรถูกตัดเมื่อสมการหนึ่งถูกลบออกจากอีกสมการ
2\left(-1\right)x+2\times 2y=0,-2x-\left(-3y\right)-1=0
เพื่อทำให้ -x และ 2x เท่ากัน คูณพจน์ทั้งหมดบนแต่ละข้างของสมการแรกด้วย 2 และพจน์ทั้งหมดในแต่ละด้านของสมการที่สองด้วย -1
-2x+4y=0,-2x+3y-1=0
ทำให้ง่ายขึ้น
-2x+2x+4y-3y+1=0
ลบ -2x+3y-1=0 จาก -2x+4y=0 โดยลบพจน์ที่เหมือนกันบนแต่ละข้างของเครื่องหมายเท่ากับ
4y-3y+1=0
เพิ่ม -2x ไปยัง 2x ตัดพจน์ -2x และ 2x ทำให้สมการเหลือตัวแปรเดียวเท่านั้นที่สามารถแก้ไขได้
y+1=0
เพิ่ม 4y ไปยัง -3y
y=-1
ลบ 1 จากทั้งสองข้างของสมการ
2x-3\left(-1\right)+1=0
ทดแทน -1 สำหรับ y ใน 2x-3y+1=0 เนื่องจากสมการเป็นผลลัพธ์ประกอบด้วยตัวแปรเดียว คุณสามารถหาค่า x โดยตรงได้
2x+3+1=0
คูณ -3 ด้วย -1
2x+4=0
เพิ่ม 3 ไปยัง 1
2x=-4
ลบ 4 จากทั้งสองข้างของสมการ
x=-2
หารทั้งสองข้างด้วย 2
x=-2,y=-1
ระบบถูกแก้แล้วในขณะนี้