aని పరిష్కరించండి (సంకీర్ణ పరిష్కారం)
\left\{\begin{matrix}a=\frac{2y}{5r}\text{, }&r\neq 0\\a\in \mathrm{C}\text{, }&y=0\text{ and }r=0\end{matrix}\right.
rని పరిష్కరించండి (సంకీర్ణ పరిష్కారం)
\left\{\begin{matrix}r=\frac{2y}{5a}\text{, }&a\neq 0\\r\in \mathrm{C}\text{, }&y=0\text{ and }a=0\end{matrix}\right.
aని పరిష్కరించండి
\left\{\begin{matrix}a=\frac{2y}{5r}\text{, }&r\neq 0\\a\in \mathrm{R}\text{, }&y=0\text{ and }r=0\end{matrix}\right.
rని పరిష్కరించండి
\left\{\begin{matrix}r=\frac{2y}{5a}\text{, }&a\neq 0\\r\in \mathrm{R}\text{, }&y=0\text{ and }a=0\end{matrix}\right.
గ్రాఫ్
షేర్ చేయి
క్లిప్బోర్డ్కు కాపీ చేయబడింది
2.5ar=y
అన్ని చరరాశి విలువలు ఎడమ వైపుకి వచ్చే విధంగా భాగాలను మార్చండి.
\frac{5r}{2}a=y
సమీకరణము ప్రామాణిక రూపంలో ఉంది.
\frac{2\times \frac{5r}{2}a}{5r}=\frac{2y}{5r}
రెండు వైపులా 2.5rతో భాగించండి.
a=\frac{2y}{5r}
2.5rతో భాగించడం ద్వారా 2.5r యొక్క గుణకారము చర్యరద్దు చేయబడుతుంది.
2.5ar=y
అన్ని చరరాశి విలువలు ఎడమ వైపుకి వచ్చే విధంగా భాగాలను మార్చండి.
\frac{5a}{2}r=y
సమీకరణము ప్రామాణిక రూపంలో ఉంది.
\frac{2\times \frac{5a}{2}r}{5a}=\frac{2y}{5a}
రెండు వైపులా 2.5aతో భాగించండి.
r=\frac{2y}{5a}
2.5aతో భాగించడం ద్వారా 2.5a యొక్క గుణకారము చర్యరద్దు చేయబడుతుంది.
2.5ar=y
అన్ని చరరాశి విలువలు ఎడమ వైపుకి వచ్చే విధంగా భాగాలను మార్చండి.
\frac{5r}{2}a=y
సమీకరణము ప్రామాణిక రూపంలో ఉంది.
\frac{2\times \frac{5r}{2}a}{5r}=\frac{2y}{5r}
రెండు వైపులా 2.5rతో భాగించండి.
a=\frac{2y}{5r}
2.5rతో భాగించడం ద్వారా 2.5r యొక్క గుణకారము చర్యరద్దు చేయబడుతుంది.
2.5ar=y
అన్ని చరరాశి విలువలు ఎడమ వైపుకి వచ్చే విధంగా భాగాలను మార్చండి.
\frac{5a}{2}r=y
సమీకరణము ప్రామాణిక రూపంలో ఉంది.
\frac{2\times \frac{5a}{2}r}{5a}=\frac{2y}{5a}
రెండు వైపులా 2.5aతో భాగించండి.
r=\frac{2y}{5a}
2.5aతో భాగించడం ద్వారా 2.5a యొక్క గుణకారము చర్యరద్దు చేయబడుతుంది.
ఉదాహరణలు
వర్గ సమీకరణం
{ x } ^ { 2 } - 4 x - 5 = 0
త్రికోణమితి
4 \sin \theta \cos \theta = 2 \sin \theta
రేఖీయ సమీకరణం
y = 3x + 4
అరిథ్మెటిక్
699 * 533
మాత్రిక
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ఏకకాల సమీకరణం
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
అవకలనం
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
అనుకలనం
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
పరిమితులు
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}