లబ్ధమూలము
\left(t-2\right)\left(t-1\right)\left(t+3\right)
మూల్యాంకనం చేయండి
t^{3}-7t+6
షేర్ చేయి
క్లిప్బోర్డ్కు కాపీ చేయబడింది
\left(t+3\right)\left(t^{2}-3t+2\right)
పరిమేయ మూల సిద్ధాంతం ప్రకారం, పాలీనామియల్ యొక్క అన్ని రేషనల్ రూట్లు రూపంలో \frac{p}{q} ఉండాలి, ఇందులో p అనేది కాన్స్టంట్ టర్మ్ 6ని భాగిస్తుంది మరియు q అనేది లీడింగ్ కోఎఫిషియంట్ 1ని భాగిస్తుంది. అటువంటి ఒక రూట్ -3. t+3తో దీనిని భాగించడం ద్వారా పాలీనామియల్ని ఫ్యాక్టర్ చేయండి.
a+b=-3 ab=1\times 2=2
t^{2}-3t+2ని పరిగణించండి. గ్రూప్ చేయడం ద్వారా సమీకరణాన్ని ఫ్యాక్టర్ చేయండి. ముందుగా, సమీకరణాన్ని t^{2}+at+bt+2 లాగా తిరిగి వ్రాయాలి. a, bను కనుగొనాలంటే, పరిష్కరించాల్సిన సిస్టమ్ను సెటప్ చేయాలి.
a=-2 b=-1
ab పాజిటివ్ కనుక, a మరియు b ఒకే గుర్తును కలిగి ఉంటాయి. a+b నెగిటివ్ కనుక, a మరియు b రెండూ నెగిటివ్గా ఉంటాయి. అటువంటి పెయిర్ మాత్రమే సిస్టమ్ పరిష్కారమం.
\left(t^{2}-2t\right)+\left(-t+2\right)
\left(t^{2}-2t\right)+\left(-t+2\right)ని t^{2}-3t+2 వలె తిరిగి వ్రాయండి.
t\left(t-2\right)-\left(t-2\right)
మొదటి సమూహంలో t మరియు రెండవ సమూహంలో -1 ఫ్యాక్టర్ చేయండి.
\left(t-2\right)\left(t-1\right)
డిస్ట్రిబ్యూటివ్ ప్రాపర్టీని ఉపయోగించి కామన్ టర్మ్ t-2ని ఫ్యాక్టర్ అవుట్ చేయండి.
\left(t-2\right)\left(t-1\right)\left(t+3\right)
పూర్తి ఫ్యాక్టర్ చేసిన ఎక్స్ప్రెషన్ని తిరిగి వ్రాయండి.
ఉదాహరణలు
వర్గ సమీకరణం
{ x } ^ { 2 } - 4 x - 5 = 0
త్రికోణమితి
4 \sin \theta \cos \theta = 2 \sin \theta
రేఖీయ సమీకరణం
y = 3x + 4
అరిథ్మెటిక్
699 * 533
మాత్రిక
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ఏకకాల సమీకరణం
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
అవకలనం
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
అనుకలనం
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
పరిమితులు
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}