మెయిన్ కంటెంట్ కు వెళ్లండి
xని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

6x^{2}+5x-6=0
రెండు భాగాల నుండి 6ని వ్యవకలనం చేయండి.
a+b=5 ab=6\left(-6\right)=-36
సమీకరణాన్ని పరిష్కరించడం కోసం, ఎడమ చేతి వైపును గ్రూప్ చేసి, ఫ్యాక్టర్ చేయండి. ముందుగా, ఎడమ చేతి వైపును 6x^{2}+ax+bx-6 లాగా తిరిగి వ్రాయాలి. a, bను కనుగొనాలంటే, పరిష్కరించాల్సిన సిస్టమ్‌ను సెటప్ చేయాలి.
-1,36 -2,18 -3,12 -4,9 -6,6
ab నెగిటివ్ కనుక, a మరియు b వ్యతిరేక గుర్తులను కలిగి ఉంటాయి. a+b పాజిటివ్ కనుక, నెగిటివ్ సంఖ్య కంటే కూడా పాజిటివ్ సంఖ్యకు ఎక్కువ అబ్జల్యూట్ విలువ ఉంటుంది. ప్రాడక్ట్ -36ని అందించగల అన్ని పెయిర్‌లను జాబితా చేయండి.
-1+36=35 -2+18=16 -3+12=9 -4+9=5 -6+6=0
ప్రతి పెయిర్ యొక్క మొత్తాన్ని గణించండి.
a=-4 b=9
సమ్ 5ను అందించే పెయిర్‌ మన పరిష్కారం.
\left(6x^{2}-4x\right)+\left(9x-6\right)
\left(6x^{2}-4x\right)+\left(9x-6\right)ని 6x^{2}+5x-6 వలె తిరిగి వ్రాయండి.
2x\left(3x-2\right)+3\left(3x-2\right)
మొదటి సమూహంలో 2x మరియు రెండవ సమూహంలో 3 ఫ్యాక్టర్ చేయండి.
\left(3x-2\right)\left(2x+3\right)
డిస్ట్రిబ్యూటివ్ ప్రాపర్టీని ఉపయోగించి కామన్ టర్మ్ 3x-2ని ఫ్యాక్టర్ అవుట్ చేయండి.
x=\frac{2}{3} x=-\frac{3}{2}
సమీకరణ పరిష్కారాలను కనుగొనడం కోసం, 3x-2=0 మరియు 2x+3=0ని పరిష్కరించండి.
6x^{2}+5x=6
వర్గ సూత్రాన్ని ఉపయోగించి రూపం ax^{2}+bx+c=0లోని అన్ని సమీకరణములను పరిష్కరించవచ్చు: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. వర్గ సూత్రంతో రెండు పరిష్కారాలు లభిస్తాయి, ±ని కూడినప్పుడు ఒకటి మరియు తీసివేసినప్పుడు మరొకటి.
6x^{2}+5x-6=6-6
సమీకరణము యొక్క రెండు భాగాల నుండి 6ని వ్యవకలనం చేయండి.
6x^{2}+5x-6=0
6ని దాని నుండే వ్యవకలనం చేస్తే 0 మిగులుతుంది.
x=\frac{-5±\sqrt{5^{2}-4\times 6\left(-6\right)}}{2\times 6}
ఈ సమీకరణం ప్రామాణిక ఆకృతిలో ఉంది: ax^{2}+bx+c=0. చతురస్రీయమైన సూత్రం \frac{-b±\sqrt{b^{2}-4ac}}{2a} a స్థానంలో 6, b స్థానంలో 5 మరియు c స్థానంలో -6 ప్రతిక్షేపించండి.
x=\frac{-5±\sqrt{25-4\times 6\left(-6\right)}}{2\times 6}
5 వర్గము.
x=\frac{-5±\sqrt{25-24\left(-6\right)}}{2\times 6}
-4 సార్లు 6ని గుణించండి.
x=\frac{-5±\sqrt{25+144}}{2\times 6}
-24 సార్లు -6ని గుణించండి.
x=\frac{-5±\sqrt{169}}{2\times 6}
144కు 25ని కూడండి.
x=\frac{-5±13}{2\times 6}
169 వర్గమూలాన్ని తీసుకోండి.
x=\frac{-5±13}{12}
2 సార్లు 6ని గుణించండి.
x=\frac{8}{12}
ఇప్పుడు ± ధనాత్మకం అని భావించి x=\frac{-5±13}{12} సమీకరణాన్ని పరిష్కరించండి. 13కు -5ని కూడండి.
x=\frac{2}{3}
4ని సంగ్రహించడం మరియు తీసివేయడం కోసం \frac{8}{12} యొక్క భిన్నమును అత్యంత తక్కువ విలువలకు తగ్గించండి.
x=-\frac{18}{12}
ఇప్పుడు ± రుణాత్మకం అని భావించి x=\frac{-5±13}{12} సమీకరణాన్ని పరిష్కరించండి. 13ని -5 నుండి వ్యవకలనం చేయండి.
x=-\frac{3}{2}
6ని సంగ్రహించడం మరియు తీసివేయడం కోసం \frac{-18}{12} యొక్క భిన్నమును అత్యంత తక్కువ విలువలకు తగ్గించండి.
x=\frac{2}{3} x=-\frac{3}{2}
సమీకరణం ఇప్పుడు పరిష్కరించబడింది.
6x^{2}+5x=6
చతరుస్రాన్ని పూర్తి చేయడం ద్వారా ఇటువంటి చతురస్రీయమైన సమీకరణాలను పరిష్కరించవచ్చు. చతురస్రాన్ని పూర్తి చేయాలంటే, సమీకరణం తప్పనిసరిగా x^{2}+bx=c ఆకృతిలో ఉండాలి.
\frac{6x^{2}+5x}{6}=\frac{6}{6}
రెండు వైపులా 6తో భాగించండి.
x^{2}+\frac{5}{6}x=\frac{6}{6}
6తో భాగించడం ద్వారా 6 యొక్క గుణకారము చర్యరద్దు చేయబడుతుంది.
x^{2}+\frac{5}{6}x=1
6తో 6ని భాగించండి.
x^{2}+\frac{5}{6}x+\left(\frac{5}{12}\right)^{2}=1+\left(\frac{5}{12}\right)^{2}
x రాశి యొక్క గుణకము \frac{5}{6}ని 2తో భాగించి \frac{5}{12}ని పొందండి. ఆపై సమీకరణము యొక్క రెండు వైపులా ఫలితానికి \frac{5}{12} యొక్క వర్గమును జోడించండి. సమీకరణము ఈ దశ తర్వాత ఎడమవైపు సంపూర్ణచతురస్రము.
x^{2}+\frac{5}{6}x+\frac{25}{144}=1+\frac{25}{144}
భిన్నము యొక్క లవము మరియు హారమును వర్గము చేయడం ద్వారా \frac{5}{12}ని వర్గము చేయండి.
x^{2}+\frac{5}{6}x+\frac{25}{144}=\frac{169}{144}
\frac{25}{144}కు 1ని కూడండి.
\left(x+\frac{5}{12}\right)^{2}=\frac{169}{144}
కారకం x^{2}+\frac{5}{6}x+\frac{25}{144}. సాధారణంగా, x^{2}+bx+c ఖచ్చితమైన చతురస్రం అయినప్పుడు అది ఎల్లప్పుడూ \left(x+\frac{b}{2}\right)^{2}గా కారకం చేయబడుతుంది.
\sqrt{\left(x+\frac{5}{12}\right)^{2}}=\sqrt{\frac{169}{144}}
సమీకరణము యొక్క రెండు భాగాల యొక్క లాగరిథమ్‌ను వర్గమూలాన్ని తీసుకోండి.
x+\frac{5}{12}=\frac{13}{12} x+\frac{5}{12}=-\frac{13}{12}
సరళీకృతం చేయండి.
x=\frac{2}{3} x=-\frac{3}{2}
సమీకరణము యొక్క రెండు భాగాల నుండి \frac{5}{12}ని వ్యవకలనం చేయండి.