లబ్ధమూలము
3b\left(2a-1\right)\left(a+2\right)
మూల్యాంకనం చేయండి
3b\left(2a-1\right)\left(a+2\right)
షేర్ చేయి
క్లిప్బోర్డ్కు కాపీ చేయబడింది
3\left(2a^{2}b+3ab-2b\right)
3 యొక్క లబ్ధమూలమును కనుగొనండి.
b\left(2a^{2}+3a-2\right)
2a^{2}b+3ab-2bని పరిగణించండి. b యొక్క లబ్ధమూలమును కనుగొనండి.
p+q=3 pq=2\left(-2\right)=-4
2a^{2}+3a-2ని పరిగణించండి. గ్రూప్ చేయడం ద్వారా సమీకరణాన్ని ఫ్యాక్టర్ చేయండి. ముందుగా, సమీకరణాన్ని 2a^{2}+pa+qa-2 లాగా తిరిగి వ్రాయాలి. p, qను కనుగొనాలంటే, పరిష్కరించాల్సిన సిస్టమ్ను సెటప్ చేయాలి.
-1,4 -2,2
pq నెగిటివ్ కనుక, p మరియు q వ్యతిరేక గుర్తులను కలిగి ఉంటాయి. p+q పాజిటివ్ కనుక, నెగిటివ్ సంఖ్య కంటే కూడా పాజిటివ్ సంఖ్యకు ఎక్కువ అబ్జల్యూట్ విలువ ఉంటుంది. ప్రాడక్ట్ -4ని అందించగల అన్ని పెయిర్లను జాబితా చేయండి.
-1+4=3 -2+2=0
ప్రతి పెయిర్ యొక్క మొత్తాన్ని గణించండి.
p=-1 q=4
సమ్ 3ను అందించే పెయిర్ మన పరిష్కారం.
\left(2a^{2}-a\right)+\left(4a-2\right)
\left(2a^{2}-a\right)+\left(4a-2\right)ని 2a^{2}+3a-2 వలె తిరిగి వ్రాయండి.
a\left(2a-1\right)+2\left(2a-1\right)
మొదటి సమూహంలో a మరియు రెండవ సమూహంలో 2 ఫ్యాక్టర్ చేయండి.
\left(2a-1\right)\left(a+2\right)
డిస్ట్రిబ్యూటివ్ ప్రాపర్టీని ఉపయోగించి కామన్ టర్మ్ 2a-1ని ఫ్యాక్టర్ అవుట్ చేయండి.
3b\left(2a-1\right)\left(a+2\right)
పూర్తి ఫ్యాక్టర్ చేసిన ఎక్స్ప్రెషన్ని తిరిగి వ్రాయండి.
ఉదాహరణలు
వర్గ సమీకరణం
{ x } ^ { 2 } - 4 x - 5 = 0
త్రికోణమితి
4 \sin \theta \cos \theta = 2 \sin \theta
రేఖీయ సమీకరణం
y = 3x + 4
అరిథ్మెటిక్
699 * 533
మాత్రిక
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ఏకకాల సమీకరణం
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
అవకలనం
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
అనుకలనం
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
పరిమితులు
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}