మూల్యాంకనం చేయండి
-6x^{6}
x ఆధారంగా వేరు పరచండి
-36x^{5}
గ్రాఫ్
షేర్ చేయి
క్లిప్బోర్డ్కు కాపీ చేయబడింది
\frac{5x^{4}\times 4}{10}x^{2}-\frac{16x^{3}}{4}x^{2}\times 2x
ఒకే పీఠము యొక్క ఘాతములను భాగించడం కోసం, వాటి ఘాతాంకములను జోడించండి. 3కి 1ని జోడించి 4 పొందండి.
\frac{5x^{4}\times 4}{10}x^{2}-\frac{16x^{3}}{4}x^{3}\times 2
ఒకే పీఠము యొక్క ఘాతములను భాగించడం కోసం, వాటి ఘాతాంకములను జోడించండి. 2కి 1ని జోడించి 3 పొందండి.
\frac{20x^{4}}{10}x^{2}-\frac{16x^{3}}{4}x^{3}\times 2
20ని పొందడం కోసం 5 మరియు 4ని గుణించండి.
2x^{4}x^{2}-\frac{16x^{3}}{4}x^{3}\times 2
20x^{4}ని 10తో భాగించి 2x^{4}ని పొందండి.
2x^{6}-\frac{16x^{3}}{4}x^{3}\times 2
ఒకే పీఠము యొక్క ఘాతములను భాగించడం కోసం, వాటి ఘాతాంకములను జోడించండి. 4కి 2ని జోడించి 6 పొందండి.
2x^{6}-4x^{3}x^{3}\times 2
16x^{3}ని 4తో భాగించి 4x^{3}ని పొందండి.
2x^{6}-4x^{6}\times 2
ఒకే పీఠము యొక్క ఘాతములను భాగించడం కోసం, వాటి ఘాతాంకములను జోడించండి. 3కి 3ని జోడించి 6 పొందండి.
2x^{6}-8x^{6}
8ని పొందడం కోసం 4 మరియు 2ని గుణించండి.
-6x^{6}
-6x^{6}ని పొందడం కోసం 2x^{6} మరియు -8x^{6}ని జత చేయండి.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5x^{4}\times 4}{10}x^{2}-\frac{16x^{3}}{4}x^{2}\times 2x)
ఒకే పీఠము యొక్క ఘాతములను భాగించడం కోసం, వాటి ఘాతాంకములను జోడించండి. 3కి 1ని జోడించి 4 పొందండి.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5x^{4}\times 4}{10}x^{2}-\frac{16x^{3}}{4}x^{3}\times 2)
ఒకే పీఠము యొక్క ఘాతములను భాగించడం కోసం, వాటి ఘాతాంకములను జోడించండి. 2కి 1ని జోడించి 3 పొందండి.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{20x^{4}}{10}x^{2}-\frac{16x^{3}}{4}x^{3}\times 2)
20ని పొందడం కోసం 5 మరియు 4ని గుణించండి.
\frac{\mathrm{d}}{\mathrm{d}x}(2x^{4}x^{2}-\frac{16x^{3}}{4}x^{3}\times 2)
20x^{4}ని 10తో భాగించి 2x^{4}ని పొందండి.
\frac{\mathrm{d}}{\mathrm{d}x}(2x^{6}-\frac{16x^{3}}{4}x^{3}\times 2)
ఒకే పీఠము యొక్క ఘాతములను భాగించడం కోసం, వాటి ఘాతాంకములను జోడించండి. 4కి 2ని జోడించి 6 పొందండి.
\frac{\mathrm{d}}{\mathrm{d}x}(2x^{6}-4x^{3}x^{3}\times 2)
16x^{3}ని 4తో భాగించి 4x^{3}ని పొందండి.
\frac{\mathrm{d}}{\mathrm{d}x}(2x^{6}-4x^{6}\times 2)
ఒకే పీఠము యొక్క ఘాతములను భాగించడం కోసం, వాటి ఘాతాంకములను జోడించండి. 3కి 3ని జోడించి 6 పొందండి.
\frac{\mathrm{d}}{\mathrm{d}x}(2x^{6}-8x^{6})
8ని పొందడం కోసం 4 మరియు 2ని గుణించండి.
\frac{\mathrm{d}}{\mathrm{d}x}(-6x^{6})
-6x^{6}ని పొందడం కోసం 2x^{6} మరియు -8x^{6}ని జత చేయండి.
6\left(-6\right)x^{6-1}
ax^{n} యొక్క డెరివేటివ్ nax^{n-1}.
-36x^{6-1}
6 సార్లు -6ని గుణించండి.
-36x^{5}
1ని 6 నుండి వ్యవకలనం చేయండి.
ఉదాహరణలు
వర్గ సమీకరణం
{ x } ^ { 2 } - 4 x - 5 = 0
త్రికోణమితి
4 \sin \theta \cos \theta = 2 \sin \theta
రేఖీయ సమీకరణం
y = 3x + 4
అరిథ్మెటిక్
699 * 533
మాత్రిక
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ఏకకాల సమీకరణం
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
అవకలనం
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
అనుకలనం
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
పరిమితులు
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}