మెయిన్ కంటెంట్ కు వెళ్లండి
లబ్ధమూలము
Tick mark Image
మూల్యాంకనం చేయండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

a+b=-9 ab=2\times 7=14
గ్రూప్ చేయడం ద్వారా సమీకరణాన్ని ఫ్యాక్టర్ చేయండి. ముందుగా, సమీకరణాన్ని 2x^{2}+ax+bx+7 లాగా తిరిగి వ్రాయాలి. a, bను కనుగొనాలంటే, పరిష్కరించాల్సిన సిస్టమ్‌ను సెటప్ చేయాలి.
-1,-14 -2,-7
ab పాజిటివ్ కనుక, a మరియు b ఒకే గుర్తును కలిగి ఉంటాయి. a+b నెగిటివ్ కనుక, a మరియు b రెండూ నెగిటివ్‌గా ఉంటాయి. ప్రాడక్ట్ 14ని అందించగల అన్ని పెయిర్‌లను జాబితా చేయండి.
-1-14=-15 -2-7=-9
ప్రతి పెయిర్ యొక్క మొత్తాన్ని గణించండి.
a=-7 b=-2
సమ్ -9ను అందించే పెయిర్‌ మన పరిష్కారం.
\left(2x^{2}-7x\right)+\left(-2x+7\right)
\left(2x^{2}-7x\right)+\left(-2x+7\right)ని 2x^{2}-9x+7 వలె తిరిగి వ్రాయండి.
x\left(2x-7\right)-\left(2x-7\right)
మొదటి సమూహంలో x మరియు రెండవ సమూహంలో -1 ఫ్యాక్టర్ చేయండి.
\left(2x-7\right)\left(x-1\right)
డిస్ట్రిబ్యూటివ్ ప్రాపర్టీని ఉపయోగించి కామన్ టర్మ్ 2x-7ని ఫ్యాక్టర్ అవుట్ చేయండి.
2x^{2}-9x+7=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) పరివర్తనం ఉపయోగించి క్వాడ్రాటిక్ పాలీనామియల్‌ ఏర్పడవచ్చు, ఇక్కడ x_{1} మరియు x_{2} అనేవి వర్గ సమీకరణం ax^{2}+bx+c=0 సాధనలు.
x=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 2\times 7}}{2\times 2}
వర్గ సూత్రాన్ని ఉపయోగించి రూపం ax^{2}+bx+c=0లోని అన్ని సమీకరణములను పరిష్కరించవచ్చు: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. వర్గ సూత్రంతో రెండు పరిష్కారాలు లభిస్తాయి, ±ని కూడినప్పుడు ఒకటి మరియు తీసివేసినప్పుడు మరొకటి.
x=\frac{-\left(-9\right)±\sqrt{81-4\times 2\times 7}}{2\times 2}
-9 వర్గము.
x=\frac{-\left(-9\right)±\sqrt{81-8\times 7}}{2\times 2}
-4 సార్లు 2ని గుణించండి.
x=\frac{-\left(-9\right)±\sqrt{81-56}}{2\times 2}
-8 సార్లు 7ని గుణించండి.
x=\frac{-\left(-9\right)±\sqrt{25}}{2\times 2}
-56కు 81ని కూడండి.
x=\frac{-\left(-9\right)±5}{2\times 2}
25 వర్గమూలాన్ని తీసుకోండి.
x=\frac{9±5}{2\times 2}
-9 సంఖ్య యొక్క వ్యతిరేకం 9.
x=\frac{9±5}{4}
2 సార్లు 2ని గుణించండి.
x=\frac{14}{4}
ఇప్పుడు ± ధనాత్మకం అని భావించి x=\frac{9±5}{4} సమీకరణాన్ని పరిష్కరించండి. 5కు 9ని కూడండి.
x=\frac{7}{2}
2ని సంగ్రహించడం మరియు తీసివేయడం కోసం \frac{14}{4} యొక్క భిన్నమును అత్యంత తక్కువ విలువలకు తగ్గించండి.
x=\frac{4}{4}
ఇప్పుడు ± రుణాత్మకం అని భావించి x=\frac{9±5}{4} సమీకరణాన్ని పరిష్కరించండి. 5ని 9 నుండి వ్యవకలనం చేయండి.
x=1
4తో 4ని భాగించండి.
2x^{2}-9x+7=2\left(x-\frac{7}{2}\right)\left(x-1\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ఉపయోగించి అసలు సూత్రీకరణను కారణాంకం వ్రాయండి. x_{1} కోసం \frac{7}{2}ని మరియు x_{2} కోసం 1ని ప్రతిక్షేపించండి.
2x^{2}-9x+7=2\times \frac{2x-7}{2}\left(x-1\right)
ఉమ్మడి హారమును కనుగొని, లవములను వ్యవకలనం చేయడం ద్వారా \frac{7}{2}ని x నుండి వ్యవకలనం చేయండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
2x^{2}-9x+7=\left(2x-7\right)\left(x-1\right)
2 మరియు 2లో అతిపెద్ద ఉమ్మడి కారకము 2ను తీసివేయండి.