మెయిన్ కంటెంట్ కు వెళ్లండి
లబ్ధమూలము
Tick mark Image
మూల్యాంకనం చేయండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

a+b=-7 ab=2\left(-15\right)=-30
గ్రూప్ చేయడం ద్వారా సమీకరణాన్ని ఫ్యాక్టర్ చేయండి. ముందుగా, సమీకరణాన్ని 2x^{2}+ax+bx-15 లాగా తిరిగి వ్రాయాలి. a, bను కనుగొనాలంటే, పరిష్కరించాల్సిన సిస్టమ్‌ను సెటప్ చేయాలి.
1,-30 2,-15 3,-10 5,-6
ab నెగిటివ్ కనుక, a మరియు b వ్యతిరేక గుర్తులను కలిగి ఉంటాయి. a+b నెగిటివ్ కనుక, పాజిటివ్ సంఖ్య కంటే కూడా నెగిటివ్ సంఖ్యకు ఎక్కువ అబ్జల్యూట్ విలువ ఉంటుంది. ప్రాడక్ట్ -30ని అందించగల అన్ని పెయిర్‌లను జాబితా చేయండి.
1-30=-29 2-15=-13 3-10=-7 5-6=-1
ప్రతి పెయిర్ యొక్క మొత్తాన్ని గణించండి.
a=-10 b=3
సమ్ -7ను అందించే పెయిర్‌ మన పరిష్కారం.
\left(2x^{2}-10x\right)+\left(3x-15\right)
\left(2x^{2}-10x\right)+\left(3x-15\right)ని 2x^{2}-7x-15 వలె తిరిగి వ్రాయండి.
2x\left(x-5\right)+3\left(x-5\right)
మొదటి సమూహంలో 2x మరియు రెండవ సమూహంలో 3 ఫ్యాక్టర్ చేయండి.
\left(x-5\right)\left(2x+3\right)
డిస్ట్రిబ్యూటివ్ ప్రాపర్టీని ఉపయోగించి కామన్ టర్మ్ x-5ని ఫ్యాక్టర్ అవుట్ చేయండి.
2x^{2}-7x-15=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) పరివర్తనం ఉపయోగించి క్వాడ్రాటిక్ పాలీనామియల్‌ ఏర్పడవచ్చు, ఇక్కడ x_{1} మరియు x_{2} అనేవి వర్గ సమీకరణం ax^{2}+bx+c=0 సాధనలు.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 2\left(-15\right)}}{2\times 2}
వర్గ సూత్రాన్ని ఉపయోగించి రూపం ax^{2}+bx+c=0లోని అన్ని సమీకరణములను పరిష్కరించవచ్చు: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. వర్గ సూత్రంతో రెండు పరిష్కారాలు లభిస్తాయి, ±ని కూడినప్పుడు ఒకటి మరియు తీసివేసినప్పుడు మరొకటి.
x=\frac{-\left(-7\right)±\sqrt{49-4\times 2\left(-15\right)}}{2\times 2}
-7 వర్గము.
x=\frac{-\left(-7\right)±\sqrt{49-8\left(-15\right)}}{2\times 2}
-4 సార్లు 2ని గుణించండి.
x=\frac{-\left(-7\right)±\sqrt{49+120}}{2\times 2}
-8 సార్లు -15ని గుణించండి.
x=\frac{-\left(-7\right)±\sqrt{169}}{2\times 2}
120కు 49ని కూడండి.
x=\frac{-\left(-7\right)±13}{2\times 2}
169 వర్గమూలాన్ని తీసుకోండి.
x=\frac{7±13}{2\times 2}
-7 సంఖ్య యొక్క వ్యతిరేకం 7.
x=\frac{7±13}{4}
2 సార్లు 2ని గుణించండి.
x=\frac{20}{4}
ఇప్పుడు ± ధనాత్మకం అని భావించి x=\frac{7±13}{4} సమీకరణాన్ని పరిష్కరించండి. 13కు 7ని కూడండి.
x=5
4తో 20ని భాగించండి.
x=-\frac{6}{4}
ఇప్పుడు ± రుణాత్మకం అని భావించి x=\frac{7±13}{4} సమీకరణాన్ని పరిష్కరించండి. 13ని 7 నుండి వ్యవకలనం చేయండి.
x=-\frac{3}{2}
2ని సంగ్రహించడం మరియు తీసివేయడం కోసం \frac{-6}{4} యొక్క భిన్నమును అత్యంత తక్కువ విలువలకు తగ్గించండి.
2x^{2}-7x-15=2\left(x-5\right)\left(x-\left(-\frac{3}{2}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ఉపయోగించి అసలు సూత్రీకరణను కారణాంకం వ్రాయండి. x_{1} కోసం 5ని మరియు x_{2} కోసం -\frac{3}{2}ని ప్రతిక్షేపించండి.
2x^{2}-7x-15=2\left(x-5\right)\left(x+\frac{3}{2}\right)
p-\left(-q\right) ఆకృతిలో ఉన్న అన్ని మానములను p+q ఆకృతిలోకి సరళీకృతం చేయండి.
2x^{2}-7x-15=2\left(x-5\right)\times \frac{2x+3}{2}
ఉమ్మడి హారమును కనుగొనడం మరియు లవములను కూడటం ద్వారా xకు \frac{3}{2}ని కూడండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
2x^{2}-7x-15=\left(x-5\right)\left(2x+3\right)
2 మరియు 2లో అతిపెద్ద ఉమ్మడి కారకము 2ను తీసివేయండి.