xని పరిష్కరించండి
x = -\frac{3}{2} = -1\frac{1}{2} = -1.5
గ్రాఫ్
షేర్ చేయి
క్లిప్బోర్డ్కు కాపీ చేయబడింది
4x^{2}+12x+9=0
రెండు వైపులా 3తో భాగించండి.
a+b=12 ab=4\times 9=36
సమీకరణాన్ని పరిష్కరించడం కోసం, ఎడమ చేతి వైపును గ్రూప్ చేసి, ఫ్యాక్టర్ చేయండి. ముందుగా, ఎడమ చేతి వైపును 4x^{2}+ax+bx+9 లాగా తిరిగి వ్రాయాలి. a, bను కనుగొనాలంటే, పరిష్కరించాల్సిన సిస్టమ్ను సెటప్ చేయాలి.
1,36 2,18 3,12 4,9 6,6
ab పాజిటివ్ కనుక, a మరియు b ఒకే గుర్తును కలిగి ఉంటాయి. a+b పాజిటివ్ కనుక, a మరియు b రెండూ పాజిటివ్గా ఉంటాయి. ప్రాడక్ట్ 36ని అందించగల అన్ని పెయిర్లను జాబితా చేయండి.
1+36=37 2+18=20 3+12=15 4+9=13 6+6=12
ప్రతి పెయిర్ యొక్క మొత్తాన్ని గణించండి.
a=6 b=6
సమ్ 12ను అందించే పెయిర్ మన పరిష్కారం.
\left(4x^{2}+6x\right)+\left(6x+9\right)
\left(4x^{2}+6x\right)+\left(6x+9\right)ని 4x^{2}+12x+9 వలె తిరిగి వ్రాయండి.
2x\left(2x+3\right)+3\left(2x+3\right)
మొదటి సమూహంలో 2x మరియు రెండవ సమూహంలో 3 ఫ్యాక్టర్ చేయండి.
\left(2x+3\right)\left(2x+3\right)
డిస్ట్రిబ్యూటివ్ ప్రాపర్టీని ఉపయోగించి కామన్ టర్మ్ 2x+3ని ఫ్యాక్టర్ అవుట్ చేయండి.
\left(2x+3\right)^{2}
ద్విపద చతురస్రం వలె తిరిగి వ్రాయండి.
x=-\frac{3}{2}
సమీకరణ పరిష్కారాలను కనుగొనడం కోసం, 2x+3=0ని పరిష్కరించండి.
12x^{2}+36x+27=0
వర్గ సూత్రాన్ని ఉపయోగించి రూపం ax^{2}+bx+c=0లోని అన్ని సమీకరణములను పరిష్కరించవచ్చు: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. వర్గ సూత్రంతో రెండు పరిష్కారాలు లభిస్తాయి, ±ని కూడినప్పుడు ఒకటి మరియు తీసివేసినప్పుడు మరొకటి.
x=\frac{-36±\sqrt{36^{2}-4\times 12\times 27}}{2\times 12}
ఈ సమీకరణం ప్రామాణిక ఆకృతిలో ఉంది: ax^{2}+bx+c=0. చతురస్రీయమైన సూత్రం \frac{-b±\sqrt{b^{2}-4ac}}{2a} a స్థానంలో 12, b స్థానంలో 36 మరియు c స్థానంలో 27 ప్రతిక్షేపించండి.
x=\frac{-36±\sqrt{1296-4\times 12\times 27}}{2\times 12}
36 వర్గము.
x=\frac{-36±\sqrt{1296-48\times 27}}{2\times 12}
-4 సార్లు 12ని గుణించండి.
x=\frac{-36±\sqrt{1296-1296}}{2\times 12}
-48 సార్లు 27ని గుణించండి.
x=\frac{-36±\sqrt{0}}{2\times 12}
-1296కు 1296ని కూడండి.
x=-\frac{36}{2\times 12}
0 వర్గమూలాన్ని తీసుకోండి.
x=-\frac{36}{24}
2 సార్లు 12ని గుణించండి.
x=-\frac{3}{2}
12ని సంగ్రహించడం మరియు తీసివేయడం కోసం \frac{-36}{24} యొక్క భిన్నమును అత్యంత తక్కువ విలువలకు తగ్గించండి.
12x^{2}+36x+27=0
చతరుస్రాన్ని పూర్తి చేయడం ద్వారా ఇటువంటి చతురస్రీయమైన సమీకరణాలను పరిష్కరించవచ్చు. చతురస్రాన్ని పూర్తి చేయాలంటే, సమీకరణం తప్పనిసరిగా x^{2}+bx=c ఆకృతిలో ఉండాలి.
12x^{2}+36x+27-27=-27
సమీకరణము యొక్క రెండు భాగాల నుండి 27ని వ్యవకలనం చేయండి.
12x^{2}+36x=-27
27ని దాని నుండే వ్యవకలనం చేస్తే 0 మిగులుతుంది.
\frac{12x^{2}+36x}{12}=-\frac{27}{12}
రెండు వైపులా 12తో భాగించండి.
x^{2}+\frac{36}{12}x=-\frac{27}{12}
12తో భాగించడం ద్వారా 12 యొక్క గుణకారము చర్యరద్దు చేయబడుతుంది.
x^{2}+3x=-\frac{27}{12}
12తో 36ని భాగించండి.
x^{2}+3x=-\frac{9}{4}
3ని సంగ్రహించడం మరియు తీసివేయడం కోసం \frac{-27}{12} యొక్క భిన్నమును అత్యంత తక్కువ విలువలకు తగ్గించండి.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=-\frac{9}{4}+\left(\frac{3}{2}\right)^{2}
x రాశి యొక్క గుణకము 3ని 2తో భాగించి \frac{3}{2}ని పొందండి. ఆపై సమీకరణము యొక్క రెండు వైపులా ఫలితానికి \frac{3}{2} యొక్క వర్గమును జోడించండి. సమీకరణము ఈ దశ తర్వాత ఎడమవైపు సంపూర్ణచతురస్రము.
x^{2}+3x+\frac{9}{4}=\frac{-9+9}{4}
భిన్నము యొక్క లవము మరియు హారమును వర్గము చేయడం ద్వారా \frac{3}{2}ని వర్గము చేయండి.
x^{2}+3x+\frac{9}{4}=0
ఉమ్మడి హారమును కనుగొనడం మరియు లవములను కూడటం ద్వారా \frac{9}{4}కు -\frac{9}{4}ని కూడండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
\left(x+\frac{3}{2}\right)^{2}=0
కారకం x^{2}+3x+\frac{9}{4}. సాధారణంగా, x^{2}+bx+c ఖచ్చితమైన చతురస్రం అయినప్పుడు అది ఎల్లప్పుడూ \left(x+\frac{b}{2}\right)^{2}గా కారకం చేయబడుతుంది.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{0}
సమీకరణము యొక్క రెండు భాగాల యొక్క లాగరిథమ్ను వర్గమూలాన్ని తీసుకోండి.
x+\frac{3}{2}=0 x+\frac{3}{2}=0
సరళీకృతం చేయండి.
x=-\frac{3}{2} x=-\frac{3}{2}
సమీకరణము యొక్క రెండు భాగాల నుండి \frac{3}{2}ని వ్యవకలనం చేయండి.
x=-\frac{3}{2}
సమీకరణం ఇప్పుడు పరిష్కరించబడింది. పరిష్కారాలు ఒకటే.
ఉదాహరణలు
వర్గ సమీకరణం
{ x } ^ { 2 } - 4 x - 5 = 0
త్రికోణమితి
4 \sin \theta \cos \theta = 2 \sin \theta
రేఖీయ సమీకరణం
y = 3x + 4
అరిథ్మెటిక్
699 * 533
మాత్రిక
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ఏకకాల సమీకరణం
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
అవకలనం
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
అనుకలనం
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
పరిమితులు
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}