మెయిన్ కంటెంట్ కు వెళ్లండి
xని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

x^{2}+3x-18\geq 0
అసమానతను -1తో గుణించడం ద్వారా అత్యధిక పవర్ యొక్క కోఎఫిషియంట్‌ని -x^{2}-3x+18 ధనాత్మకంగా మార్చండి. -1 అనేది రుణాత్మకం అయితే, అసమాన దిశ మార్చబడుతుంది.
x^{2}+3x-18=0
అసమానతను పరిష్కరించడం కోసం, ఎడమ చేతి వైపు ఫ్యాక్టర్ చేయండి. ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) పరివర్తనం ఉపయోగించి క్వాడ్రాటిక్ పాలీనామియల్‌ ఏర్పడవచ్చు, ఇక్కడ x_{1} మరియు x_{2} అనేవి వర్గ సమీకరణం ax^{2}+bx+c=0 సాధనలు.
x=\frac{-3±\sqrt{3^{2}-4\times 1\left(-18\right)}}{2}
ax^{2}+bx+c=0 ఫారమ్ యొక్క అన్ని సమీకరణాలను దిగువ క్వాడ్రాటిక్ సూత్రాన్ని ఉపయోగించి పరిష్కరించవచ్చు: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. క్వాడ్రాటిక్ సూత్రంలో 1 స్థానంలో a, 3 స్థానంలో b -18 స్థానంలో c ఉంచండి.
x=\frac{-3±9}{2}
లెక్కలు చేయండి.
x=3 x=-6
± ప్లస్ మరియు ± మైనస్ అయినప్పుడు సమీకరణం x=\frac{-3±9}{2}ని పరిష్కరించండి.
\left(x-3\right)\left(x+6\right)\geq 0
పొందిన పరిష్కారాలను ఉపయోగించి అసమానతను తిరిగి వ్రాయండి.
x-3\leq 0 x+6\leq 0
లబ్ధము ≥0 అవ్వాలంటే, x-3 మరియు x+6 రెండూ ≤0 లేదా రెండూ ≥0 అయి ఉండాలి. x-3 మరియు x+6 రెండూ ≤0 అని పరిగణించండి.
x\leq -6
రెండు అసమానతల సంతృప్తి పరిష్కారం x\leq -6.
x+6\geq 0 x-3\geq 0
x-3 మరియు x+6 రెండూ ≥0 అని పరిగణించండి.
x\geq 3
రెండు అసమానతల సంతృప్తి పరిష్కారం x\geq 3.
x\leq -6\text{; }x\geq 3
పొందిన పరిష్కారాల కలయికే అంతిమ పరిష్కారం.