xని పరిష్కరించండి
x=-\frac{1}{2}=-0.5
x=5
గ్రాఫ్
షేర్ చేయి
క్లిప్బోర్డ్కు కాపీ చేయబడింది
2x^{2}-3x-5=6x
2x-5ని x+1ని గుణించి, సారూప్య అంశాలను కలపడం కోసం డిస్ట్రిబ్యూటివ్ లక్షణాన్ని ఉపయోగించండి.
2x^{2}-3x-5-6x=0
రెండు భాగాల నుండి 6xని వ్యవకలనం చేయండి.
2x^{2}-9x-5=0
-9xని పొందడం కోసం -3x మరియు -6xని జత చేయండి.
a+b=-9 ab=2\left(-5\right)=-10
సమీకరణాన్ని పరిష్కరించడం కోసం, ఎడమ చేతి వైపును గ్రూప్ చేసి, ఫ్యాక్టర్ చేయండి. ముందుగా, ఎడమ చేతి వైపును 2x^{2}+ax+bx-5 లాగా తిరిగి వ్రాయాలి. a, bను కనుగొనాలంటే, పరిష్కరించాల్సిన సిస్టమ్ను సెటప్ చేయాలి.
1,-10 2,-5
ab నెగిటివ్ కనుక, a మరియు b వ్యతిరేక గుర్తులను కలిగి ఉంటాయి. a+b నెగిటివ్ కనుక, పాజిటివ్ సంఖ్య కంటే కూడా నెగిటివ్ సంఖ్యకు ఎక్కువ అబ్జల్యూట్ విలువ ఉంటుంది. ప్రాడక్ట్ -10ని అందించగల అన్ని పెయిర్లను జాబితా చేయండి.
1-10=-9 2-5=-3
ప్రతి పెయిర్ యొక్క మొత్తాన్ని గణించండి.
a=-10 b=1
సమ్ -9ను అందించే పెయిర్ మన పరిష్కారం.
\left(2x^{2}-10x\right)+\left(x-5\right)
\left(2x^{2}-10x\right)+\left(x-5\right)ని 2x^{2}-9x-5 వలె తిరిగి వ్రాయండి.
2x\left(x-5\right)+x-5
2x^{2}-10xలో 2xని ఫ్యాక్టర్ అవుట్ చేయండి.
\left(x-5\right)\left(2x+1\right)
డిస్ట్రిబ్యూటివ్ ప్రాపర్టీని ఉపయోగించి కామన్ టర్మ్ x-5ని ఫ్యాక్టర్ అవుట్ చేయండి.
x=5 x=-\frac{1}{2}
సమీకరణ పరిష్కారాలను కనుగొనడం కోసం, x-5=0 మరియు 2x+1=0ని పరిష్కరించండి.
2x^{2}-3x-5=6x
2x-5ని x+1ని గుణించి, సారూప్య అంశాలను కలపడం కోసం డిస్ట్రిబ్యూటివ్ లక్షణాన్ని ఉపయోగించండి.
2x^{2}-3x-5-6x=0
రెండు భాగాల నుండి 6xని వ్యవకలనం చేయండి.
2x^{2}-9x-5=0
-9xని పొందడం కోసం -3x మరియు -6xని జత చేయండి.
x=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 2\left(-5\right)}}{2\times 2}
ఈ సమీకరణం ప్రామాణిక ఆకృతిలో ఉంది: ax^{2}+bx+c=0. చతురస్రీయమైన సూత్రం \frac{-b±\sqrt{b^{2}-4ac}}{2a} a స్థానంలో 2, b స్థానంలో -9 మరియు c స్థానంలో -5 ప్రతిక్షేపించండి.
x=\frac{-\left(-9\right)±\sqrt{81-4\times 2\left(-5\right)}}{2\times 2}
-9 వర్గము.
x=\frac{-\left(-9\right)±\sqrt{81-8\left(-5\right)}}{2\times 2}
-4 సార్లు 2ని గుణించండి.
x=\frac{-\left(-9\right)±\sqrt{81+40}}{2\times 2}
-8 సార్లు -5ని గుణించండి.
x=\frac{-\left(-9\right)±\sqrt{121}}{2\times 2}
40కు 81ని కూడండి.
x=\frac{-\left(-9\right)±11}{2\times 2}
121 వర్గమూలాన్ని తీసుకోండి.
x=\frac{9±11}{2\times 2}
-9 సంఖ్య యొక్క వ్యతిరేకం 9.
x=\frac{9±11}{4}
2 సార్లు 2ని గుణించండి.
x=\frac{20}{4}
ఇప్పుడు ± ధనాత్మకం అని భావించి x=\frac{9±11}{4} సమీకరణాన్ని పరిష్కరించండి. 11కు 9ని కూడండి.
x=5
4తో 20ని భాగించండి.
x=-\frac{2}{4}
ఇప్పుడు ± రుణాత్మకం అని భావించి x=\frac{9±11}{4} సమీకరణాన్ని పరిష్కరించండి. 11ని 9 నుండి వ్యవకలనం చేయండి.
x=-\frac{1}{2}
2ని సంగ్రహించడం మరియు తీసివేయడం కోసం \frac{-2}{4} యొక్క భిన్నమును అత్యంత తక్కువ విలువలకు తగ్గించండి.
x=5 x=-\frac{1}{2}
సమీకరణం ఇప్పుడు పరిష్కరించబడింది.
2x^{2}-3x-5=6x
2x-5ని x+1ని గుణించి, సారూప్య అంశాలను కలపడం కోసం డిస్ట్రిబ్యూటివ్ లక్షణాన్ని ఉపయోగించండి.
2x^{2}-3x-5-6x=0
రెండు భాగాల నుండి 6xని వ్యవకలనం చేయండి.
2x^{2}-9x-5=0
-9xని పొందడం కోసం -3x మరియు -6xని జత చేయండి.
2x^{2}-9x=5
రెండు వైపులా 5ని జోడించండి. సున్నాతో ఏ సంఖ్యను కూడినా అదే సంఖ్య వస్తుంది.
\frac{2x^{2}-9x}{2}=\frac{5}{2}
రెండు వైపులా 2తో భాగించండి.
x^{2}-\frac{9}{2}x=\frac{5}{2}
2తో భాగించడం ద్వారా 2 యొక్క గుణకారము చర్యరద్దు చేయబడుతుంది.
x^{2}-\frac{9}{2}x+\left(-\frac{9}{4}\right)^{2}=\frac{5}{2}+\left(-\frac{9}{4}\right)^{2}
x రాశి యొక్క గుణకము -\frac{9}{2}ని 2తో భాగించి -\frac{9}{4}ని పొందండి. ఆపై సమీకరణము యొక్క రెండు వైపులా ఫలితానికి -\frac{9}{4} యొక్క వర్గమును జోడించండి. సమీకరణము ఈ దశ తర్వాత ఎడమవైపు సంపూర్ణచతురస్రము.
x^{2}-\frac{9}{2}x+\frac{81}{16}=\frac{5}{2}+\frac{81}{16}
భిన్నము యొక్క లవము మరియు హారమును వర్గము చేయడం ద్వారా -\frac{9}{4}ని వర్గము చేయండి.
x^{2}-\frac{9}{2}x+\frac{81}{16}=\frac{121}{16}
ఉమ్మడి హారమును కనుగొనడం మరియు లవములను కూడటం ద్వారా \frac{81}{16}కు \frac{5}{2}ని కూడండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
\left(x-\frac{9}{4}\right)^{2}=\frac{121}{16}
కారకం x^{2}-\frac{9}{2}x+\frac{81}{16}. సాధారణంగా, x^{2}+bx+c ఖచ్చితమైన చతురస్రం అయినప్పుడు అది ఎల్లప్పుడూ \left(x+\frac{b}{2}\right)^{2}గా కారకం చేయబడుతుంది.
\sqrt{\left(x-\frac{9}{4}\right)^{2}}=\sqrt{\frac{121}{16}}
సమీకరణము యొక్క రెండు భాగాల యొక్క లాగరిథమ్ను వర్గమూలాన్ని తీసుకోండి.
x-\frac{9}{4}=\frac{11}{4} x-\frac{9}{4}=-\frac{11}{4}
సరళీకృతం చేయండి.
x=5 x=-\frac{1}{2}
సమీకరణం యొక్క రెండు వైపులా \frac{9}{4}ని కూడండి.
ఉదాహరణలు
వర్గ సమీకరణం
{ x } ^ { 2 } - 4 x - 5 = 0
త్రికోణమితి
4 \sin \theta \cos \theta = 2 \sin \theta
రేఖీయ సమీకరణం
y = 3x + 4
అరిథ్మెటిక్
699 * 533
మాత్రిక
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ఏకకాల సమీకరణం
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
అవకలనం
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
అనుకలనం
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
పరిమితులు
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}