మెయిన్ కంటెంట్ కు వెళ్లండి
y, xని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

y-x=-3
మొదటి సమీకరణాన్ని పరిగణించండి. రెండు భాగాల నుండి xని వ్యవకలనం చేయండి.
y+x=6
రెండవ సమీకరణాన్ని పరిగణించండి. రెండు వైపులా xని జోడించండి.
y-x=-3,y+x=6
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
y-x=-3
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న yని వేరు చేయడం ద్వారా yని పరిష్కరించండి.
y=x-3
సమీకరణం యొక్క రెండు వైపులా xని కూడండి.
x-3+x=6
మరొక సమీకరణములో yను x-3 స్థానంలో ప్రతిక్షేపించండి, y+x=6.
2x-3=6
xకు xని కూడండి.
2x=9
సమీకరణం యొక్క రెండు వైపులా 3ని కూడండి.
x=\frac{9}{2}
రెండు వైపులా 2తో భాగించండి.
y=\frac{9}{2}-3
y=x-3లో xను \frac{9}{2} స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు yని నేరుగా పరిష్కరించవచ్చు.
y=\frac{3}{2}
\frac{9}{2}కు -3ని కూడండి.
y=\frac{3}{2},x=\frac{9}{2}
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
y-x=-3
మొదటి సమీకరణాన్ని పరిగణించండి. రెండు భాగాల నుండి xని వ్యవకలనం చేయండి.
y+x=6
రెండవ సమీకరణాన్ని పరిగణించండి. రెండు వైపులా xని జోడించండి.
y-x=-3,y+x=6
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}1&-1\\1&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-3\\6\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}1&-1\\1&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}-3\\6\end{matrix}\right)
\left(\begin{matrix}1&-1\\1&1\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}-3\\6\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}-3\\6\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-1\right)}&-\frac{-1}{1-\left(-1\right)}\\-\frac{1}{1-\left(-1\right)}&\frac{1}{1-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}-3\\6\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&\frac{1}{2}\\-\frac{1}{2}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}-3\\6\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\left(-3\right)+\frac{1}{2}\times 6\\-\frac{1}{2}\left(-3\right)+\frac{1}{2}\times 6\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2}\\\frac{9}{2}\end{matrix}\right)
అంకగణితము చేయండి.
y=\frac{3}{2},x=\frac{9}{2}
y మరియు x మాత్రిక మూలకాలను విస్తరించండి.
y-x=-3
మొదటి సమీకరణాన్ని పరిగణించండి. రెండు భాగాల నుండి xని వ్యవకలనం చేయండి.
y+x=6
రెండవ సమీకరణాన్ని పరిగణించండి. రెండు వైపులా xని జోడించండి.
y-x=-3,y+x=6
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
y-y-x-x=-3-6
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా y+x=6ని y-x=-3 నుండి వ్యవకలనం చేయండి.
-x-x=-3-6
-yకు yని కూడండి. y మరియు -y విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
-2x=-3-6
-xకు -xని కూడండి.
-2x=-9
-6కు -3ని కూడండి.
x=\frac{9}{2}
రెండు వైపులా -2తో భాగించండి.
y+\frac{9}{2}=6
y+x=6లో xను \frac{9}{2} స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు yని నేరుగా పరిష్కరించవచ్చు.
y=\frac{3}{2}
సమీకరణము యొక్క రెండు భాగాల నుండి \frac{9}{2}ని వ్యవకలనం చేయండి.
y=\frac{3}{2},x=\frac{9}{2}
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.