x, yని పరిష్కరించండి
x=-4
y=1
గ్రాఫ్
షేర్ చేయి
క్లిప్బోర్డ్కు కాపీ చేయబడింది
x-10y=-14,-5x-8y=12
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
x-10y=-14
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
x=10y-14
సమీకరణం యొక్క రెండు వైపులా 10yని కూడండి.
-5\left(10y-14\right)-8y=12
మరొక సమీకరణములో xను 10y-14 స్థానంలో ప్రతిక్షేపించండి, -5x-8y=12.
-50y+70-8y=12
-5 సార్లు 10y-14ని గుణించండి.
-58y+70=12
-8yకు -50yని కూడండి.
-58y=-58
సమీకరణము యొక్క రెండు భాగాల నుండి 70ని వ్యవకలనం చేయండి.
y=1
రెండు వైపులా -58తో భాగించండి.
x=10-14
x=10y-14లో yను 1 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=-4
10కు -14ని కూడండి.
x=-4,y=1
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
x-10y=-14,-5x-8y=12
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}1&-10\\-5&-8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-14\\12\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}1&-10\\-5&-8\end{matrix}\right))\left(\begin{matrix}1&-10\\-5&-8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-10\\-5&-8\end{matrix}\right))\left(\begin{matrix}-14\\12\end{matrix}\right)
\left(\begin{matrix}1&-10\\-5&-8\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-10\\-5&-8\end{matrix}\right))\left(\begin{matrix}-14\\12\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-10\\-5&-8\end{matrix}\right))\left(\begin{matrix}-14\\12\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{8}{-8-\left(-10\left(-5\right)\right)}&-\frac{-10}{-8-\left(-10\left(-5\right)\right)}\\-\frac{-5}{-8-\left(-10\left(-5\right)\right)}&\frac{1}{-8-\left(-10\left(-5\right)\right)}\end{matrix}\right)\left(\begin{matrix}-14\\12\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{29}&-\frac{5}{29}\\-\frac{5}{58}&-\frac{1}{58}\end{matrix}\right)\left(\begin{matrix}-14\\12\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{29}\left(-14\right)-\frac{5}{29}\times 12\\-\frac{5}{58}\left(-14\right)-\frac{1}{58}\times 12\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4\\1\end{matrix}\right)
అంకగణితము చేయండి.
x=-4,y=1
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
x-10y=-14,-5x-8y=12
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
-5x-5\left(-10\right)y=-5\left(-14\right),-5x-8y=12
x మరియు -5xని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను -5తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను 1తో గుణించండి.
-5x+50y=70,-5x-8y=12
సరళీకృతం చేయండి.
-5x+5x+50y+8y=70-12
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా -5x-8y=12ని -5x+50y=70 నుండి వ్యవకలనం చేయండి.
50y+8y=70-12
5xకు -5xని కూడండి. -5x మరియు 5x విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
58y=70-12
8yకు 50yని కూడండి.
58y=58
-12కు 70ని కూడండి.
y=1
రెండు వైపులా 58తో భాగించండి.
-5x-8=12
-5x-8y=12లో yను 1 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
-5x=20
సమీకరణం యొక్క రెండు వైపులా 8ని కూడండి.
x=-4
రెండు వైపులా -5తో భాగించండి.
x=-4,y=1
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
ఉదాహరణలు
వర్గ సమీకరణం
{ x } ^ { 2 } - 4 x - 5 = 0
త్రికోణమితి
4 \sin \theta \cos \theta = 2 \sin \theta
రేఖీయ సమీకరణం
y = 3x + 4
అరిథ్మెటిక్
699 * 533
మాత్రిక
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ఏకకాల సమీకరణం
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
అవకలనం
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
అనుకలనం
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
పరిమితులు
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}