మెయిన్ కంటెంట్ కు వెళ్లండి
x, yని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

x+3y=14,4x-y=14
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
x+3y=14
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
x=-3y+14
సమీకరణము యొక్క రెండు భాగాల నుండి 3yని వ్యవకలనం చేయండి.
4\left(-3y+14\right)-y=14
మరొక సమీకరణములో xను -3y+14 స్థానంలో ప్రతిక్షేపించండి, 4x-y=14.
-12y+56-y=14
4 సార్లు -3y+14ని గుణించండి.
-13y+56=14
-yకు -12yని కూడండి.
-13y=-42
సమీకరణము యొక్క రెండు భాగాల నుండి 56ని వ్యవకలనం చేయండి.
y=\frac{42}{13}
రెండు వైపులా -13తో భాగించండి.
x=-3\times \frac{42}{13}+14
x=-3y+14లో yను \frac{42}{13} స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=-\frac{126}{13}+14
-3 సార్లు \frac{42}{13}ని గుణించండి.
x=\frac{56}{13}
-\frac{126}{13}కు 14ని కూడండి.
x=\frac{56}{13},y=\frac{42}{13}
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
x+3y=14,4x-y=14
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}1&3\\4&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}14\\14\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}1&3\\4&-1\end{matrix}\right))\left(\begin{matrix}1&3\\4&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\4&-1\end{matrix}\right))\left(\begin{matrix}14\\14\end{matrix}\right)
\left(\begin{matrix}1&3\\4&-1\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\4&-1\end{matrix}\right))\left(\begin{matrix}14\\14\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\4&-1\end{matrix}\right))\left(\begin{matrix}14\\14\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-3\times 4}&-\frac{3}{-1-3\times 4}\\-\frac{4}{-1-3\times 4}&\frac{1}{-1-3\times 4}\end{matrix}\right)\left(\begin{matrix}14\\14\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{13}&\frac{3}{13}\\\frac{4}{13}&-\frac{1}{13}\end{matrix}\right)\left(\begin{matrix}14\\14\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{13}\times 14+\frac{3}{13}\times 14\\\frac{4}{13}\times 14-\frac{1}{13}\times 14\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{56}{13}\\\frac{42}{13}\end{matrix}\right)
అంకగణితము చేయండి.
x=\frac{56}{13},y=\frac{42}{13}
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
x+3y=14,4x-y=14
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
4x+4\times 3y=4\times 14,4x-y=14
x మరియు 4xని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను 4తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను 1తో గుణించండి.
4x+12y=56,4x-y=14
సరళీకృతం చేయండి.
4x-4x+12y+y=56-14
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా 4x-y=14ని 4x+12y=56 నుండి వ్యవకలనం చేయండి.
12y+y=56-14
-4xకు 4xని కూడండి. 4x మరియు -4x విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
13y=56-14
yకు 12yని కూడండి.
13y=42
-14కు 56ని కూడండి.
y=\frac{42}{13}
రెండు వైపులా 13తో భాగించండి.
4x-\frac{42}{13}=14
4x-y=14లో yను \frac{42}{13} స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
4x=\frac{224}{13}
సమీకరణం యొక్క రెండు వైపులా \frac{42}{13}ని కూడండి.
x=\frac{56}{13}
రెండు వైపులా 4తో భాగించండి.
x=\frac{56}{13},y=\frac{42}{13}
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.