a, bని పరిష్కరించండి
a = \frac{5}{3} = 1\frac{2}{3} \approx 1.666666667
b = \frac{7}{3} = 2\frac{1}{3} \approx 2.333333333
షేర్ చేయి
క్లిప్బోర్డ్కు కాపీ చేయబడింది
a+b=4,2a-b=1
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
a+b=4
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న aని వేరు చేయడం ద్వారా aని పరిష్కరించండి.
a=-b+4
సమీకరణము యొక్క రెండు భాగాల నుండి bని వ్యవకలనం చేయండి.
2\left(-b+4\right)-b=1
మరొక సమీకరణములో aను -b+4 స్థానంలో ప్రతిక్షేపించండి, 2a-b=1.
-2b+8-b=1
2 సార్లు -b+4ని గుణించండి.
-3b+8=1
-bకు -2bని కూడండి.
-3b=-7
సమీకరణము యొక్క రెండు భాగాల నుండి 8ని వ్యవకలనం చేయండి.
b=\frac{7}{3}
రెండు వైపులా -3తో భాగించండి.
a=-\frac{7}{3}+4
a=-b+4లో bను \frac{7}{3} స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు aని నేరుగా పరిష్కరించవచ్చు.
a=\frac{5}{3}
-\frac{7}{3}కు 4ని కూడండి.
a=\frac{5}{3},b=\frac{7}{3}
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
a+b=4,2a-b=1
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}1&1\\2&-1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}4\\1\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}1&1\\2&-1\end{matrix}\right))\left(\begin{matrix}1&1\\2&-1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&-1\end{matrix}\right))\left(\begin{matrix}4\\1\end{matrix}\right)
\left(\begin{matrix}1&1\\2&-1\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&-1\end{matrix}\right))\left(\begin{matrix}4\\1\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&-1\end{matrix}\right))\left(\begin{matrix}4\\1\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-2}&-\frac{1}{-1-2}\\-\frac{2}{-1-2}&\frac{1}{-1-2}\end{matrix}\right)\left(\begin{matrix}4\\1\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}&\frac{1}{3}\\\frac{2}{3}&-\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}4\\1\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\times 4+\frac{1}{3}\\\frac{2}{3}\times 4-\frac{1}{3}\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{5}{3}\\\frac{7}{3}\end{matrix}\right)
అంకగణితము చేయండి.
a=\frac{5}{3},b=\frac{7}{3}
a మరియు b మాత్రిక మూలకాలను విస్తరించండి.
a+b=4,2a-b=1
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
2a+2b=2\times 4,2a-b=1
a మరియు 2aని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను 2తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను 1తో గుణించండి.
2a+2b=8,2a-b=1
సరళీకృతం చేయండి.
2a-2a+2b+b=8-1
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా 2a-b=1ని 2a+2b=8 నుండి వ్యవకలనం చేయండి.
2b+b=8-1
-2aకు 2aని కూడండి. 2a మరియు -2a విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
3b=8-1
bకు 2bని కూడండి.
3b=7
-1కు 8ని కూడండి.
b=\frac{7}{3}
రెండు వైపులా 3తో భాగించండి.
2a-\frac{7}{3}=1
2a-b=1లో bను \frac{7}{3} స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు aని నేరుగా పరిష్కరించవచ్చు.
2a=\frac{10}{3}
సమీకరణం యొక్క రెండు వైపులా \frac{7}{3}ని కూడండి.
a=\frac{5}{3}
రెండు వైపులా 2తో భాగించండి.
a=\frac{5}{3},b=\frac{7}{3}
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
ఉదాహరణలు
వర్గ సమీకరణం
{ x } ^ { 2 } - 4 x - 5 = 0
త్రికోణమితి
4 \sin \theta \cos \theta = 2 \sin \theta
రేఖీయ సమీకరణం
y = 3x + 4
అరిథ్మెటిక్
699 * 533
మాత్రిక
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ఏకకాల సమీకరణం
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
అవకలనం
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
అనుకలనం
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
పరిమితులు
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}