a, bని పరిష్కరించండి
a = \frac{5}{3} = 1\frac{2}{3} \approx 1.666666667
b = \frac{41}{3} = 13\frac{2}{3} \approx 13.666666667
షేర్ చేయి
క్లిప్బోర్డ్కు కాపీ చేయబడింది
a+2b=29,2a+b=17
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
a+2b=29
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న aని వేరు చేయడం ద్వారా aని పరిష్కరించండి.
a=-2b+29
సమీకరణము యొక్క రెండు భాగాల నుండి 2bని వ్యవకలనం చేయండి.
2\left(-2b+29\right)+b=17
మరొక సమీకరణములో aను -2b+29 స్థానంలో ప్రతిక్షేపించండి, 2a+b=17.
-4b+58+b=17
2 సార్లు -2b+29ని గుణించండి.
-3b+58=17
bకు -4bని కూడండి.
-3b=-41
సమీకరణము యొక్క రెండు భాగాల నుండి 58ని వ్యవకలనం చేయండి.
b=\frac{41}{3}
రెండు వైపులా -3తో భాగించండి.
a=-2\times \frac{41}{3}+29
a=-2b+29లో bను \frac{41}{3} స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు aని నేరుగా పరిష్కరించవచ్చు.
a=-\frac{82}{3}+29
-2 సార్లు \frac{41}{3}ని గుణించండి.
a=\frac{5}{3}
-\frac{82}{3}కు 29ని కూడండి.
a=\frac{5}{3},b=\frac{41}{3}
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
a+2b=29,2a+b=17
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}1&2\\2&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}29\\17\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}1&2\\2&1\end{matrix}\right))\left(\begin{matrix}1&2\\2&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\2&1\end{matrix}\right))\left(\begin{matrix}29\\17\end{matrix}\right)
\left(\begin{matrix}1&2\\2&1\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\2&1\end{matrix}\right))\left(\begin{matrix}29\\17\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\2&1\end{matrix}\right))\left(\begin{matrix}29\\17\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-2\times 2}&-\frac{2}{1-2\times 2}\\-\frac{2}{1-2\times 2}&\frac{1}{1-2\times 2}\end{matrix}\right)\left(\begin{matrix}29\\17\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}&\frac{2}{3}\\\frac{2}{3}&-\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}29\\17\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}\times 29+\frac{2}{3}\times 17\\\frac{2}{3}\times 29-\frac{1}{3}\times 17\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{5}{3}\\\frac{41}{3}\end{matrix}\right)
అంకగణితము చేయండి.
a=\frac{5}{3},b=\frac{41}{3}
a మరియు b మాత్రిక మూలకాలను విస్తరించండి.
a+2b=29,2a+b=17
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
2a+2\times 2b=2\times 29,2a+b=17
a మరియు 2aని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను 2తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను 1తో గుణించండి.
2a+4b=58,2a+b=17
సరళీకృతం చేయండి.
2a-2a+4b-b=58-17
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా 2a+b=17ని 2a+4b=58 నుండి వ్యవకలనం చేయండి.
4b-b=58-17
-2aకు 2aని కూడండి. 2a మరియు -2a విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
3b=58-17
-bకు 4bని కూడండి.
3b=41
-17కు 58ని కూడండి.
b=\frac{41}{3}
రెండు వైపులా 3తో భాగించండి.
2a+\frac{41}{3}=17
2a+b=17లో bను \frac{41}{3} స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు aని నేరుగా పరిష్కరించవచ్చు.
2a=\frac{10}{3}
సమీకరణము యొక్క రెండు భాగాల నుండి \frac{41}{3}ని వ్యవకలనం చేయండి.
a=\frac{5}{3}
రెండు వైపులా 2తో భాగించండి.
a=\frac{5}{3},b=\frac{41}{3}
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
ఉదాహరణలు
వర్గ సమీకరణం
{ x } ^ { 2 } - 4 x - 5 = 0
త్రికోణమితి
4 \sin \theta \cos \theta = 2 \sin \theta
రేఖీయ సమీకరణం
y = 3x + 4
అరిథ్మెటిక్
699 * 533
మాత్రిక
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ఏకకాల సమీకరణం
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
అవకలనం
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
అనుకలనం
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
పరిమితులు
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}