x, yని పరిష్కరించండి
x=1
y=2
గ్రాఫ్
షేర్ చేయి
క్లిప్బోర్డ్కు కాపీ చేయబడింది
6x-y=4,4x-5y=-6
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
6x-y=4
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
6x=y+4
సమీకరణం యొక్క రెండు వైపులా yని కూడండి.
x=\frac{1}{6}\left(y+4\right)
రెండు వైపులా 6తో భాగించండి.
x=\frac{1}{6}y+\frac{2}{3}
\frac{1}{6} సార్లు y+4ని గుణించండి.
4\left(\frac{1}{6}y+\frac{2}{3}\right)-5y=-6
మరొక సమీకరణములో xను \frac{y}{6}+\frac{2}{3} స్థానంలో ప్రతిక్షేపించండి, 4x-5y=-6.
\frac{2}{3}y+\frac{8}{3}-5y=-6
4 సార్లు \frac{y}{6}+\frac{2}{3}ని గుణించండి.
-\frac{13}{3}y+\frac{8}{3}=-6
-5yకు \frac{2y}{3}ని కూడండి.
-\frac{13}{3}y=-\frac{26}{3}
సమీకరణము యొక్క రెండు భాగాల నుండి \frac{8}{3}ని వ్యవకలనం చేయండి.
y=2
సమీకరణము యొక్క రెండు వైపులా -\frac{13}{3}తో భాగించండి, ఇది భిన్నము యొక్క విలోమరాశులతో రెండు వైపులా గుణించడంతో సమానం.
x=\frac{1}{6}\times 2+\frac{2}{3}
x=\frac{1}{6}y+\frac{2}{3}లో yను 2 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=\frac{1+2}{3}
\frac{1}{6} సార్లు 2ని గుణించండి.
x=1
ఉమ్మడి హారమును కనుగొనడం మరియు లవములను కూడటం ద్వారా \frac{1}{3}కు \frac{2}{3}ని కూడండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
x=1,y=2
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
6x-y=4,4x-5y=-6
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}6&-1\\4&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\-6\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}6&-1\\4&-5\end{matrix}\right))\left(\begin{matrix}6&-1\\4&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&-1\\4&-5\end{matrix}\right))\left(\begin{matrix}4\\-6\end{matrix}\right)
\left(\begin{matrix}6&-1\\4&-5\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&-1\\4&-5\end{matrix}\right))\left(\begin{matrix}4\\-6\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&-1\\4&-5\end{matrix}\right))\left(\begin{matrix}4\\-6\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{6\left(-5\right)-\left(-4\right)}&-\frac{-1}{6\left(-5\right)-\left(-4\right)}\\-\frac{4}{6\left(-5\right)-\left(-4\right)}&\frac{6}{6\left(-5\right)-\left(-4\right)}\end{matrix}\right)\left(\begin{matrix}4\\-6\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{26}&-\frac{1}{26}\\\frac{2}{13}&-\frac{3}{13}\end{matrix}\right)\left(\begin{matrix}4\\-6\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{26}\times 4-\frac{1}{26}\left(-6\right)\\\frac{2}{13}\times 4-\frac{3}{13}\left(-6\right)\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\2\end{matrix}\right)
అంకగణితము చేయండి.
x=1,y=2
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
6x-y=4,4x-5y=-6
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
4\times 6x+4\left(-1\right)y=4\times 4,6\times 4x+6\left(-5\right)y=6\left(-6\right)
6x మరియు 4xని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను 4తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను 6తో గుణించండి.
24x-4y=16,24x-30y=-36
సరళీకృతం చేయండి.
24x-24x-4y+30y=16+36
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా 24x-30y=-36ని 24x-4y=16 నుండి వ్యవకలనం చేయండి.
-4y+30y=16+36
-24xకు 24xని కూడండి. 24x మరియు -24x విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
26y=16+36
30yకు -4yని కూడండి.
26y=52
36కు 16ని కూడండి.
y=2
రెండు వైపులా 26తో భాగించండి.
4x-5\times 2=-6
4x-5y=-6లో yను 2 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
4x-10=-6
-5 సార్లు 2ని గుణించండి.
4x=4
సమీకరణం యొక్క రెండు వైపులా 10ని కూడండి.
x=1
రెండు వైపులా 4తో భాగించండి.
x=1,y=2
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
ఉదాహరణలు
వర్గ సమీకరణం
{ x } ^ { 2 } - 4 x - 5 = 0
త్రికోణమితి
4 \sin \theta \cos \theta = 2 \sin \theta
రేఖీయ సమీకరణం
y = 3x + 4
అరిథ్మెటిక్
699 * 533
మాత్రిక
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ఏకకాల సమీకరణం
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
అవకలనం
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
అనుకలనం
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
పరిమితులు
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}