మెయిన్ కంటెంట్ కు వెళ్లండి
x, yని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

5x+2y=34,7x-3y=7
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
5x+2y=34
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
5x=-2y+34
సమీకరణము యొక్క రెండు భాగాల నుండి 2yని వ్యవకలనం చేయండి.
x=\frac{1}{5}\left(-2y+34\right)
రెండు వైపులా 5తో భాగించండి.
x=-\frac{2}{5}y+\frac{34}{5}
\frac{1}{5} సార్లు -2y+34ని గుణించండి.
7\left(-\frac{2}{5}y+\frac{34}{5}\right)-3y=7
మరొక సమీకరణములో xను \frac{-2y+34}{5} స్థానంలో ప్రతిక్షేపించండి, 7x-3y=7.
-\frac{14}{5}y+\frac{238}{5}-3y=7
7 సార్లు \frac{-2y+34}{5}ని గుణించండి.
-\frac{29}{5}y+\frac{238}{5}=7
-3yకు -\frac{14y}{5}ని కూడండి.
-\frac{29}{5}y=-\frac{203}{5}
సమీకరణము యొక్క రెండు భాగాల నుండి \frac{238}{5}ని వ్యవకలనం చేయండి.
y=7
సమీకరణము యొక్క రెండు వైపులా -\frac{29}{5}తో భాగించండి, ఇది భిన్నము యొక్క విలోమరాశులతో రెండు వైపులా గుణించడంతో సమానం.
x=-\frac{2}{5}\times 7+\frac{34}{5}
x=-\frac{2}{5}y+\frac{34}{5}లో yను 7 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=\frac{-14+34}{5}
-\frac{2}{5} సార్లు 7ని గుణించండి.
x=4
ఉమ్మడి హారమును కనుగొనడం మరియు లవములను కూడటం ద్వారా -\frac{14}{5}కు \frac{34}{5}ని కూడండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
x=4,y=7
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
5x+2y=34,7x-3y=7
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}5&2\\7&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}34\\7\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}5&2\\7&-3\end{matrix}\right))\left(\begin{matrix}5&2\\7&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&2\\7&-3\end{matrix}\right))\left(\begin{matrix}34\\7\end{matrix}\right)
\left(\begin{matrix}5&2\\7&-3\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&2\\7&-3\end{matrix}\right))\left(\begin{matrix}34\\7\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&2\\7&-3\end{matrix}\right))\left(\begin{matrix}34\\7\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{5\left(-3\right)-2\times 7}&-\frac{2}{5\left(-3\right)-2\times 7}\\-\frac{7}{5\left(-3\right)-2\times 7}&\frac{5}{5\left(-3\right)-2\times 7}\end{matrix}\right)\left(\begin{matrix}34\\7\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{29}&\frac{2}{29}\\\frac{7}{29}&-\frac{5}{29}\end{matrix}\right)\left(\begin{matrix}34\\7\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{29}\times 34+\frac{2}{29}\times 7\\\frac{7}{29}\times 34-\frac{5}{29}\times 7\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\7\end{matrix}\right)
అంకగణితము చేయండి.
x=4,y=7
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
5x+2y=34,7x-3y=7
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
7\times 5x+7\times 2y=7\times 34,5\times 7x+5\left(-3\right)y=5\times 7
5x మరియు 7xని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను 7తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను 5తో గుణించండి.
35x+14y=238,35x-15y=35
సరళీకృతం చేయండి.
35x-35x+14y+15y=238-35
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా 35x-15y=35ని 35x+14y=238 నుండి వ్యవకలనం చేయండి.
14y+15y=238-35
-35xకు 35xని కూడండి. 35x మరియు -35x విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
29y=238-35
15yకు 14yని కూడండి.
29y=203
-35కు 238ని కూడండి.
y=7
రెండు వైపులా 29తో భాగించండి.
7x-3\times 7=7
7x-3y=7లో yను 7 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
7x-21=7
-3 సార్లు 7ని గుణించండి.
7x=28
సమీకరణం యొక్క రెండు వైపులా 21ని కూడండి.
x=4
రెండు వైపులా 7తో భాగించండి.
x=4,y=7
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.