మెయిన్ కంటెంట్ కు వెళ్లండి
x, yని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

2x+2y=6,-5x+7y=11
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
2x+2y=6
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
2x=-2y+6
సమీకరణము యొక్క రెండు భాగాల నుండి 2yని వ్యవకలనం చేయండి.
x=\frac{1}{2}\left(-2y+6\right)
రెండు వైపులా 2తో భాగించండి.
x=-y+3
\frac{1}{2} సార్లు -2y+6ని గుణించండి.
-5\left(-y+3\right)+7y=11
మరొక సమీకరణములో xను -y+3 స్థానంలో ప్రతిక్షేపించండి, -5x+7y=11.
5y-15+7y=11
-5 సార్లు -y+3ని గుణించండి.
12y-15=11
7yకు 5yని కూడండి.
12y=26
సమీకరణం యొక్క రెండు వైపులా 15ని కూడండి.
y=\frac{13}{6}
రెండు వైపులా 12తో భాగించండి.
x=-\frac{13}{6}+3
x=-y+3లో yను \frac{13}{6} స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=\frac{5}{6}
-\frac{13}{6}కు 3ని కూడండి.
x=\frac{5}{6},y=\frac{13}{6}
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
2x+2y=6,-5x+7y=11
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}2&2\\-5&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\11\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}2&2\\-5&7\end{matrix}\right))\left(\begin{matrix}2&2\\-5&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&2\\-5&7\end{matrix}\right))\left(\begin{matrix}6\\11\end{matrix}\right)
\left(\begin{matrix}2&2\\-5&7\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&2\\-5&7\end{matrix}\right))\left(\begin{matrix}6\\11\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&2\\-5&7\end{matrix}\right))\left(\begin{matrix}6\\11\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{2\times 7-2\left(-5\right)}&-\frac{2}{2\times 7-2\left(-5\right)}\\-\frac{-5}{2\times 7-2\left(-5\right)}&\frac{2}{2\times 7-2\left(-5\right)}\end{matrix}\right)\left(\begin{matrix}6\\11\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{24}&-\frac{1}{12}\\\frac{5}{24}&\frac{1}{12}\end{matrix}\right)\left(\begin{matrix}6\\11\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{24}\times 6-\frac{1}{12}\times 11\\\frac{5}{24}\times 6+\frac{1}{12}\times 11\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{6}\\\frac{13}{6}\end{matrix}\right)
అంకగణితము చేయండి.
x=\frac{5}{6},y=\frac{13}{6}
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
2x+2y=6,-5x+7y=11
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
-5\times 2x-5\times 2y=-5\times 6,2\left(-5\right)x+2\times 7y=2\times 11
2x మరియు -5xని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను -5తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను 2తో గుణించండి.
-10x-10y=-30,-10x+14y=22
సరళీకృతం చేయండి.
-10x+10x-10y-14y=-30-22
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా -10x+14y=22ని -10x-10y=-30 నుండి వ్యవకలనం చేయండి.
-10y-14y=-30-22
10xకు -10xని కూడండి. -10x మరియు 10x విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
-24y=-30-22
-14yకు -10yని కూడండి.
-24y=-52
-22కు -30ని కూడండి.
y=\frac{13}{6}
రెండు వైపులా -24తో భాగించండి.
-5x+7\times \frac{13}{6}=11
-5x+7y=11లో yను \frac{13}{6} స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
-5x+\frac{91}{6}=11
7 సార్లు \frac{13}{6}ని గుణించండి.
-5x=-\frac{25}{6}
సమీకరణము యొక్క రెండు భాగాల నుండి \frac{91}{6}ని వ్యవకలనం చేయండి.
x=\frac{5}{6}
రెండు వైపులా -5తో భాగించండి.
x=\frac{5}{6},y=\frac{13}{6}
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.