మెయిన్ కంటెంట్ కు వెళ్లండి
x, yని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

-2x+15y=-24,2x+9y=24
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
-2x+15y=-24
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
-2x=-15y-24
సమీకరణము యొక్క రెండు భాగాల నుండి 15yని వ్యవకలనం చేయండి.
x=-\frac{1}{2}\left(-15y-24\right)
రెండు వైపులా -2తో భాగించండి.
x=\frac{15}{2}y+12
-\frac{1}{2} సార్లు -15y-24ని గుణించండి.
2\left(\frac{15}{2}y+12\right)+9y=24
మరొక సమీకరణములో xను \frac{15y}{2}+12 స్థానంలో ప్రతిక్షేపించండి, 2x+9y=24.
15y+24+9y=24
2 సార్లు \frac{15y}{2}+12ని గుణించండి.
24y+24=24
9yకు 15yని కూడండి.
24y=0
సమీకరణము యొక్క రెండు భాగాల నుండి 24ని వ్యవకలనం చేయండి.
y=0
రెండు వైపులా 24తో భాగించండి.
x=12
x=\frac{15}{2}y+12లో yను 0 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=12,y=0
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
-2x+15y=-24,2x+9y=24
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}-2&15\\2&9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-24\\24\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}-2&15\\2&9\end{matrix}\right))\left(\begin{matrix}-2&15\\2&9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&15\\2&9\end{matrix}\right))\left(\begin{matrix}-24\\24\end{matrix}\right)
\left(\begin{matrix}-2&15\\2&9\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&15\\2&9\end{matrix}\right))\left(\begin{matrix}-24\\24\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&15\\2&9\end{matrix}\right))\left(\begin{matrix}-24\\24\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{-2\times 9-15\times 2}&-\frac{15}{-2\times 9-15\times 2}\\-\frac{2}{-2\times 9-15\times 2}&-\frac{2}{-2\times 9-15\times 2}\end{matrix}\right)\left(\begin{matrix}-24\\24\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{16}&\frac{5}{16}\\\frac{1}{24}&\frac{1}{24}\end{matrix}\right)\left(\begin{matrix}-24\\24\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{16}\left(-24\right)+\frac{5}{16}\times 24\\\frac{1}{24}\left(-24\right)+\frac{1}{24}\times 24\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}12\\0\end{matrix}\right)
అంకగణితము చేయండి.
x=12,y=0
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
-2x+15y=-24,2x+9y=24
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
2\left(-2\right)x+2\times 15y=2\left(-24\right),-2\times 2x-2\times 9y=-2\times 24
-2x మరియు 2xని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను 2తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను -2తో గుణించండి.
-4x+30y=-48,-4x-18y=-48
సరళీకృతం చేయండి.
-4x+4x+30y+18y=-48+48
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా -4x-18y=-48ని -4x+30y=-48 నుండి వ్యవకలనం చేయండి.
30y+18y=-48+48
4xకు -4xని కూడండి. -4x మరియు 4x విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
48y=-48+48
18yకు 30yని కూడండి.
48y=0
48కు -48ని కూడండి.
y=0
రెండు వైపులా 48తో భాగించండి.
2x=24
2x+9y=24లో yను 0 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=12
రెండు వైపులా 2తో భాగించండి.
x=12,y=0
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.