మెయిన్ కంటెంట్ కు వెళ్లండి
x, yని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

4x+2y=8,16x-y=14
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
4x+2y=8
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
4x=-2y+8
సమీకరణము యొక్క రెండు భాగాల నుండి 2yని వ్యవకలనం చేయండి.
x=\frac{1}{4}\left(-2y+8\right)
రెండు వైపులా 4తో భాగించండి.
x=-\frac{1}{2}y+2
\frac{1}{4} సార్లు -2y+8ని గుణించండి.
16\left(-\frac{1}{2}y+2\right)-y=14
మరొక సమీకరణములో xను -\frac{y}{2}+2 స్థానంలో ప్రతిక్షేపించండి, 16x-y=14.
-8y+32-y=14
16 సార్లు -\frac{y}{2}+2ని గుణించండి.
-9y+32=14
-yకు -8yని కూడండి.
-9y=-18
సమీకరణము యొక్క రెండు భాగాల నుండి 32ని వ్యవకలనం చేయండి.
y=2
రెండు వైపులా -9తో భాగించండి.
x=-\frac{1}{2}\times 2+2
x=-\frac{1}{2}y+2లో yను 2 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=-1+2
-\frac{1}{2} సార్లు 2ని గుణించండి.
x=1
-1కు 2ని కూడండి.
x=1,y=2
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
4x+2y=8,16x-y=14
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}4&2\\16&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\14\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}4&2\\16&-1\end{matrix}\right))\left(\begin{matrix}4&2\\16&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&2\\16&-1\end{matrix}\right))\left(\begin{matrix}8\\14\end{matrix}\right)
\left(\begin{matrix}4&2\\16&-1\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&2\\16&-1\end{matrix}\right))\left(\begin{matrix}8\\14\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&2\\16&-1\end{matrix}\right))\left(\begin{matrix}8\\14\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4\left(-1\right)-2\times 16}&-\frac{2}{4\left(-1\right)-2\times 16}\\-\frac{16}{4\left(-1\right)-2\times 16}&\frac{4}{4\left(-1\right)-2\times 16}\end{matrix}\right)\left(\begin{matrix}8\\14\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{36}&\frac{1}{18}\\\frac{4}{9}&-\frac{1}{9}\end{matrix}\right)\left(\begin{matrix}8\\14\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{36}\times 8+\frac{1}{18}\times 14\\\frac{4}{9}\times 8-\frac{1}{9}\times 14\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\2\end{matrix}\right)
అంకగణితము చేయండి.
x=1,y=2
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
4x+2y=8,16x-y=14
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
16\times 4x+16\times 2y=16\times 8,4\times 16x+4\left(-1\right)y=4\times 14
4x మరియు 16xని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను 16తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను 4తో గుణించండి.
64x+32y=128,64x-4y=56
సరళీకృతం చేయండి.
64x-64x+32y+4y=128-56
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా 64x-4y=56ని 64x+32y=128 నుండి వ్యవకలనం చేయండి.
32y+4y=128-56
-64xకు 64xని కూడండి. 64x మరియు -64x విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
36y=128-56
4yకు 32yని కూడండి.
36y=72
-56కు 128ని కూడండి.
y=2
రెండు వైపులా 36తో భాగించండి.
16x-2=14
16x-y=14లో yను 2 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
16x=16
సమీకరణం యొక్క రెండు వైపులా 2ని కూడండి.
x=1
రెండు వైపులా 16తో భాగించండి.
x=1,y=2
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.