మెయిన్ కంటెంట్ కు వెళ్లండి
x, yని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

-2x+7y=10,3x+7y=2
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
-2x+7y=10
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
-2x=-7y+10
సమీకరణము యొక్క రెండు భాగాల నుండి 7yని వ్యవకలనం చేయండి.
x=-\frac{1}{2}\left(-7y+10\right)
రెండు వైపులా -2తో భాగించండి.
x=\frac{7}{2}y-5
-\frac{1}{2} సార్లు -7y+10ని గుణించండి.
3\left(\frac{7}{2}y-5\right)+7y=2
మరొక సమీకరణములో xను \frac{7y}{2}-5 స్థానంలో ప్రతిక్షేపించండి, 3x+7y=2.
\frac{21}{2}y-15+7y=2
3 సార్లు \frac{7y}{2}-5ని గుణించండి.
\frac{35}{2}y-15=2
7yకు \frac{21y}{2}ని కూడండి.
\frac{35}{2}y=17
సమీకరణం యొక్క రెండు వైపులా 15ని కూడండి.
y=\frac{34}{35}
సమీకరణము యొక్క రెండు వైపులా \frac{35}{2}తో భాగించండి, ఇది భిన్నము యొక్క విలోమరాశులతో రెండు వైపులా గుణించడంతో సమానం.
x=\frac{7}{2}\times \frac{34}{35}-5
x=\frac{7}{2}y-5లో yను \frac{34}{35} స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=\frac{17}{5}-5
లవమును లవంసార్లు మరియు హారమును హారముసార్లు గుణించడం ద్వారా \frac{7}{2} సార్లు \frac{34}{35}ని గుణించండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
x=-\frac{8}{5}
\frac{17}{5}కు -5ని కూడండి.
x=-\frac{8}{5},y=\frac{34}{35}
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
-2x+7y=10,3x+7y=2
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}-2&7\\3&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\2\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}-2&7\\3&7\end{matrix}\right))\left(\begin{matrix}-2&7\\3&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&7\\3&7\end{matrix}\right))\left(\begin{matrix}10\\2\end{matrix}\right)
\left(\begin{matrix}-2&7\\3&7\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&7\\3&7\end{matrix}\right))\left(\begin{matrix}10\\2\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&7\\3&7\end{matrix}\right))\left(\begin{matrix}10\\2\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{-2\times 7-7\times 3}&-\frac{7}{-2\times 7-7\times 3}\\-\frac{3}{-2\times 7-7\times 3}&-\frac{2}{-2\times 7-7\times 3}\end{matrix}\right)\left(\begin{matrix}10\\2\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5}&\frac{1}{5}\\\frac{3}{35}&\frac{2}{35}\end{matrix}\right)\left(\begin{matrix}10\\2\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5}\times 10+\frac{1}{5}\times 2\\\frac{3}{35}\times 10+\frac{2}{35}\times 2\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{8}{5}\\\frac{34}{35}\end{matrix}\right)
అంకగణితము చేయండి.
x=-\frac{8}{5},y=\frac{34}{35}
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
-2x+7y=10,3x+7y=2
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
-2x-3x+7y-7y=10-2
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా 3x+7y=2ని -2x+7y=10 నుండి వ్యవకలనం చేయండి.
-2x-3x=10-2
-7yకు 7yని కూడండి. 7y మరియు -7y విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
-5x=10-2
-3xకు -2xని కూడండి.
-5x=8
-2కు 10ని కూడండి.
x=-\frac{8}{5}
రెండు వైపులా -5తో భాగించండి.
3\left(-\frac{8}{5}\right)+7y=2
3x+7y=2లో xను -\frac{8}{5} స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు yని నేరుగా పరిష్కరించవచ్చు.
-\frac{24}{5}+7y=2
3 సార్లు -\frac{8}{5}ని గుణించండి.
7y=\frac{34}{5}
సమీకరణం యొక్క రెండు వైపులా \frac{24}{5}ని కూడండి.
y=\frac{34}{35}
రెండు వైపులా 7తో భాగించండి.
x=-\frac{8}{5},y=\frac{34}{35}
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.