మెయిన్ కంటెంట్ కు వెళ్లండి
x, yని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

x-\frac{2}{3}y=2,\frac{1}{2}x+\frac{1}{3}y=-2
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
x-\frac{2}{3}y=2
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
x=\frac{2}{3}y+2
సమీకరణం యొక్క రెండు వైపులా \frac{2y}{3}ని కూడండి.
\frac{1}{2}\left(\frac{2}{3}y+2\right)+\frac{1}{3}y=-2
మరొక సమీకరణములో xను \frac{2y}{3}+2 స్థానంలో ప్రతిక్షేపించండి, \frac{1}{2}x+\frac{1}{3}y=-2.
\frac{1}{3}y+1+\frac{1}{3}y=-2
\frac{1}{2} సార్లు \frac{2y}{3}+2ని గుణించండి.
\frac{2}{3}y+1=-2
\frac{y}{3}కు \frac{y}{3}ని కూడండి.
\frac{2}{3}y=-3
సమీకరణము యొక్క రెండు భాగాల నుండి 1ని వ్యవకలనం చేయండి.
y=-\frac{9}{2}
సమీకరణము యొక్క రెండు వైపులా \frac{2}{3}తో భాగించండి, ఇది భిన్నము యొక్క విలోమరాశులతో రెండు వైపులా గుణించడంతో సమానం.
x=\frac{2}{3}\left(-\frac{9}{2}\right)+2
x=\frac{2}{3}y+2లో yను -\frac{9}{2} స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=-3+2
లవమును లవంసార్లు మరియు హారమును హారముసార్లు గుణించడం ద్వారా \frac{2}{3} సార్లు -\frac{9}{2}ని గుణించండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
x=-1
-3కు 2ని కూడండి.
x=-1,y=-\frac{9}{2}
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
x-\frac{2}{3}y=2,\frac{1}{2}x+\frac{1}{3}y=-2
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}1&-\frac{2}{3}\\\frac{1}{2}&\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\-2\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}1&-\frac{2}{3}\\\frac{1}{2}&\frac{1}{3}\end{matrix}\right))\left(\begin{matrix}1&-\frac{2}{3}\\\frac{1}{2}&\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-\frac{2}{3}\\\frac{1}{2}&\frac{1}{3}\end{matrix}\right))\left(\begin{matrix}2\\-2\end{matrix}\right)
\left(\begin{matrix}1&-\frac{2}{3}\\\frac{1}{2}&\frac{1}{3}\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-\frac{2}{3}\\\frac{1}{2}&\frac{1}{3}\end{matrix}\right))\left(\begin{matrix}2\\-2\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-\frac{2}{3}\\\frac{1}{2}&\frac{1}{3}\end{matrix}\right))\left(\begin{matrix}2\\-2\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{\frac{1}{3}}{\frac{1}{3}-\left(-\frac{2}{3}\times \frac{1}{2}\right)}&-\frac{-\frac{2}{3}}{\frac{1}{3}-\left(-\frac{2}{3}\times \frac{1}{2}\right)}\\-\frac{\frac{1}{2}}{\frac{1}{3}-\left(-\frac{2}{3}\times \frac{1}{2}\right)}&\frac{1}{\frac{1}{3}-\left(-\frac{2}{3}\times \frac{1}{2}\right)}\end{matrix}\right)\left(\begin{matrix}2\\-2\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&1\\-\frac{3}{4}&\frac{3}{2}\end{matrix}\right)\left(\begin{matrix}2\\-2\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 2-2\\-\frac{3}{4}\times 2+\frac{3}{2}\left(-2\right)\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\-\frac{9}{2}\end{matrix}\right)
అంకగణితము చేయండి.
x=-1,y=-\frac{9}{2}
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
x-\frac{2}{3}y=2,\frac{1}{2}x+\frac{1}{3}y=-2
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
\frac{1}{2}x+\frac{1}{2}\left(-\frac{2}{3}\right)y=\frac{1}{2}\times 2,\frac{1}{2}x+\frac{1}{3}y=-2
x మరియు \frac{x}{2}ని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను \frac{1}{2}తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను 1తో గుణించండి.
\frac{1}{2}x-\frac{1}{3}y=1,\frac{1}{2}x+\frac{1}{3}y=-2
సరళీకృతం చేయండి.
\frac{1}{2}x-\frac{1}{2}x-\frac{1}{3}y-\frac{1}{3}y=1+2
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా \frac{1}{2}x+\frac{1}{3}y=-2ని \frac{1}{2}x-\frac{1}{3}y=1 నుండి వ్యవకలనం చేయండి.
-\frac{1}{3}y-\frac{1}{3}y=1+2
-\frac{x}{2}కు \frac{x}{2}ని కూడండి. \frac{x}{2} మరియు -\frac{x}{2} విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
-\frac{2}{3}y=1+2
-\frac{y}{3}కు -\frac{y}{3}ని కూడండి.
-\frac{2}{3}y=3
2కు 1ని కూడండి.
y=-\frac{9}{2}
సమీకరణము యొక్క రెండు వైపులా -\frac{2}{3}తో భాగించండి, ఇది భిన్నము యొక్క విలోమరాశులతో రెండు వైపులా గుణించడంతో సమానం.
\frac{1}{2}x+\frac{1}{3}\left(-\frac{9}{2}\right)=-2
\frac{1}{2}x+\frac{1}{3}y=-2లో yను -\frac{9}{2} స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
\frac{1}{2}x-\frac{3}{2}=-2
లవమును లవంసార్లు మరియు హారమును హారముసార్లు గుణించడం ద్వారా \frac{1}{3} సార్లు -\frac{9}{2}ని గుణించండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
\frac{1}{2}x=-\frac{1}{2}
సమీకరణం యొక్క రెండు వైపులా \frac{3}{2}ని కూడండి.
x=-1
రెండు వైపులా 2తో గుణించండి.
x=-1,y=-\frac{9}{2}
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.