\left\{ \begin{array} { l } { x = 3 y + 4 } \\ { y = \frac { 1 } { 2 } x - \frac { 8 } { 3 } } \end{array} \right.
x, yని పరిష్కరించండి
x=8
y = \frac{4}{3} = 1\frac{1}{3} \approx 1.333333333
గ్రాఫ్
షేర్ చేయి
క్లిప్బోర్డ్కు కాపీ చేయబడింది
x-3y=4
మొదటి సమీకరణాన్ని పరిగణించండి. రెండు భాగాల నుండి 3yని వ్యవకలనం చేయండి.
y-\frac{1}{2}x=-\frac{8}{3}
రెండవ సమీకరణాన్ని పరిగణించండి. రెండు భాగాల నుండి \frac{1}{2}xని వ్యవకలనం చేయండి.
x-3y=4,-\frac{1}{2}x+y=-\frac{8}{3}
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
x-3y=4
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
x=3y+4
సమీకరణం యొక్క రెండు వైపులా 3yని కూడండి.
-\frac{1}{2}\left(3y+4\right)+y=-\frac{8}{3}
మరొక సమీకరణములో xను 3y+4 స్థానంలో ప్రతిక్షేపించండి, -\frac{1}{2}x+y=-\frac{8}{3}.
-\frac{3}{2}y-2+y=-\frac{8}{3}
-\frac{1}{2} సార్లు 3y+4ని గుణించండి.
-\frac{1}{2}y-2=-\frac{8}{3}
yకు -\frac{3y}{2}ని కూడండి.
-\frac{1}{2}y=-\frac{2}{3}
సమీకరణం యొక్క రెండు వైపులా 2ని కూడండి.
y=\frac{4}{3}
రెండు వైపులా -2తో గుణించండి.
x=3\times \frac{4}{3}+4
x=3y+4లో yను \frac{4}{3} స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=4+4
3 సార్లు \frac{4}{3}ని గుణించండి.
x=8
4కు 4ని కూడండి.
x=8,y=\frac{4}{3}
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
x-3y=4
మొదటి సమీకరణాన్ని పరిగణించండి. రెండు భాగాల నుండి 3yని వ్యవకలనం చేయండి.
y-\frac{1}{2}x=-\frac{8}{3}
రెండవ సమీకరణాన్ని పరిగణించండి. రెండు భాగాల నుండి \frac{1}{2}xని వ్యవకలనం చేయండి.
x-3y=4,-\frac{1}{2}x+y=-\frac{8}{3}
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}1&-3\\-\frac{1}{2}&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\-\frac{8}{3}\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}1&-3\\-\frac{1}{2}&1\end{matrix}\right))\left(\begin{matrix}1&-3\\-\frac{1}{2}&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\-\frac{1}{2}&1\end{matrix}\right))\left(\begin{matrix}4\\-\frac{8}{3}\end{matrix}\right)
\left(\begin{matrix}1&-3\\-\frac{1}{2}&1\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\-\frac{1}{2}&1\end{matrix}\right))\left(\begin{matrix}4\\-\frac{8}{3}\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\-\frac{1}{2}&1\end{matrix}\right))\left(\begin{matrix}4\\-\frac{8}{3}\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-3\left(-\frac{1}{2}\right)\right)}&-\frac{-3}{1-\left(-3\left(-\frac{1}{2}\right)\right)}\\-\frac{-\frac{1}{2}}{1-\left(-3\left(-\frac{1}{2}\right)\right)}&\frac{1}{1-\left(-3\left(-\frac{1}{2}\right)\right)}\end{matrix}\right)\left(\begin{matrix}4\\-\frac{8}{3}\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2&-6\\-1&-2\end{matrix}\right)\left(\begin{matrix}4\\-\frac{8}{3}\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\times 4-6\left(-\frac{8}{3}\right)\\-4-2\left(-\frac{8}{3}\right)\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\\frac{4}{3}\end{matrix}\right)
అంకగణితము చేయండి.
x=8,y=\frac{4}{3}
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
x-3y=4
మొదటి సమీకరణాన్ని పరిగణించండి. రెండు భాగాల నుండి 3yని వ్యవకలనం చేయండి.
y-\frac{1}{2}x=-\frac{8}{3}
రెండవ సమీకరణాన్ని పరిగణించండి. రెండు భాగాల నుండి \frac{1}{2}xని వ్యవకలనం చేయండి.
x-3y=4,-\frac{1}{2}x+y=-\frac{8}{3}
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
-\frac{1}{2}x-\frac{1}{2}\left(-3\right)y=-\frac{1}{2}\times 4,-\frac{1}{2}x+y=-\frac{8}{3}
x మరియు -\frac{x}{2}ని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను -\frac{1}{2}తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను 1తో గుణించండి.
-\frac{1}{2}x+\frac{3}{2}y=-2,-\frac{1}{2}x+y=-\frac{8}{3}
సరళీకృతం చేయండి.
-\frac{1}{2}x+\frac{1}{2}x+\frac{3}{2}y-y=-2+\frac{8}{3}
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా -\frac{1}{2}x+y=-\frac{8}{3}ని -\frac{1}{2}x+\frac{3}{2}y=-2 నుండి వ్యవకలనం చేయండి.
\frac{3}{2}y-y=-2+\frac{8}{3}
\frac{x}{2}కు -\frac{x}{2}ని కూడండి. -\frac{x}{2} మరియు \frac{x}{2} విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
\frac{1}{2}y=-2+\frac{8}{3}
-yకు \frac{3y}{2}ని కూడండి.
\frac{1}{2}y=\frac{2}{3}
\frac{8}{3}కు -2ని కూడండి.
y=\frac{4}{3}
రెండు వైపులా 2తో గుణించండి.
-\frac{1}{2}x+\frac{4}{3}=-\frac{8}{3}
-\frac{1}{2}x+y=-\frac{8}{3}లో yను \frac{4}{3} స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
-\frac{1}{2}x=-4
సమీకరణము యొక్క రెండు భాగాల నుండి \frac{4}{3}ని వ్యవకలనం చేయండి.
x=8
రెండు వైపులా -2తో గుణించండి.
x=8,y=\frac{4}{3}
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
ఉదాహరణలు
వర్గ సమీకరణం
{ x } ^ { 2 } - 4 x - 5 = 0
త్రికోణమితి
4 \sin \theta \cos \theta = 2 \sin \theta
రేఖీయ సమీకరణం
y = 3x + 4
అరిథ్మెటిక్
699 * 533
మాత్రిక
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ఏకకాల సమీకరణం
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
అవకలనం
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
అనుకలనం
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
పరిమితులు
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}