మెయిన్ కంటెంట్ కు వెళ్లండి
x, yని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

5x+7y=41,5x+8y=44
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
5x+7y=41
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
5x=-7y+41
సమీకరణము యొక్క రెండు భాగాల నుండి 7yని వ్యవకలనం చేయండి.
x=\frac{1}{5}\left(-7y+41\right)
రెండు వైపులా 5తో భాగించండి.
x=-\frac{7}{5}y+\frac{41}{5}
\frac{1}{5} సార్లు -7y+41ని గుణించండి.
5\left(-\frac{7}{5}y+\frac{41}{5}\right)+8y=44
మరొక సమీకరణములో xను \frac{-7y+41}{5} స్థానంలో ప్రతిక్షేపించండి, 5x+8y=44.
-7y+41+8y=44
5 సార్లు \frac{-7y+41}{5}ని గుణించండి.
y+41=44
8yకు -7yని కూడండి.
y=3
సమీకరణము యొక్క రెండు భాగాల నుండి 41ని వ్యవకలనం చేయండి.
x=-\frac{7}{5}\times 3+\frac{41}{5}
x=-\frac{7}{5}y+\frac{41}{5}లో yను 3 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=\frac{-21+41}{5}
-\frac{7}{5} సార్లు 3ని గుణించండి.
x=4
ఉమ్మడి హారమును కనుగొనడం మరియు లవములను కూడటం ద్వారా -\frac{21}{5}కు \frac{41}{5}ని కూడండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
x=4,y=3
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
5x+7y=41,5x+8y=44
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}5&7\\5&8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}41\\44\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}5&7\\5&8\end{matrix}\right))\left(\begin{matrix}5&7\\5&8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&7\\5&8\end{matrix}\right))\left(\begin{matrix}41\\44\end{matrix}\right)
\left(\begin{matrix}5&7\\5&8\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&7\\5&8\end{matrix}\right))\left(\begin{matrix}41\\44\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&7\\5&8\end{matrix}\right))\left(\begin{matrix}41\\44\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{8}{5\times 8-7\times 5}&-\frac{7}{5\times 8-7\times 5}\\-\frac{5}{5\times 8-7\times 5}&\frac{5}{5\times 8-7\times 5}\end{matrix}\right)\left(\begin{matrix}41\\44\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{8}{5}&-\frac{7}{5}\\-1&1\end{matrix}\right)\left(\begin{matrix}41\\44\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{8}{5}\times 41-\frac{7}{5}\times 44\\-41+44\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\3\end{matrix}\right)
అంకగణితము చేయండి.
x=4,y=3
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
5x+7y=41,5x+8y=44
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
5x-5x+7y-8y=41-44
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా 5x+8y=44ని 5x+7y=41 నుండి వ్యవకలనం చేయండి.
7y-8y=41-44
-5xకు 5xని కూడండి. 5x మరియు -5x విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
-y=41-44
-8yకు 7yని కూడండి.
-y=-3
-44కు 41ని కూడండి.
y=3
రెండు వైపులా -1తో భాగించండి.
5x+8\times 3=44
5x+8y=44లో yను 3 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
5x+24=44
8 సార్లు 3ని గుణించండి.
5x=20
సమీకరణము యొక్క రెండు భాగాల నుండి 24ని వ్యవకలనం చేయండి.
x=4
రెండు వైపులా 5తో భాగించండి.
x=4,y=3
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.