మెయిన్ కంటెంట్ కు వెళ్లండి
x, yని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

3x+y=3,5x-y=15
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
3x+y=3
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
3x=-y+3
సమీకరణము యొక్క రెండు భాగాల నుండి yని వ్యవకలనం చేయండి.
x=\frac{1}{3}\left(-y+3\right)
రెండు వైపులా 3తో భాగించండి.
x=-\frac{1}{3}y+1
\frac{1}{3} సార్లు -y+3ని గుణించండి.
5\left(-\frac{1}{3}y+1\right)-y=15
మరొక సమీకరణములో xను -\frac{y}{3}+1 స్థానంలో ప్రతిక్షేపించండి, 5x-y=15.
-\frac{5}{3}y+5-y=15
5 సార్లు -\frac{y}{3}+1ని గుణించండి.
-\frac{8}{3}y+5=15
-yకు -\frac{5y}{3}ని కూడండి.
-\frac{8}{3}y=10
సమీకరణము యొక్క రెండు భాగాల నుండి 5ని వ్యవకలనం చేయండి.
y=-\frac{15}{4}
సమీకరణము యొక్క రెండు వైపులా -\frac{8}{3}తో భాగించండి, ఇది భిన్నము యొక్క విలోమరాశులతో రెండు వైపులా గుణించడంతో సమానం.
x=-\frac{1}{3}\left(-\frac{15}{4}\right)+1
x=-\frac{1}{3}y+1లో yను -\frac{15}{4} స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=\frac{5}{4}+1
లవమును లవంసార్లు మరియు హారమును హారముసార్లు గుణించడం ద్వారా -\frac{1}{3} సార్లు -\frac{15}{4}ని గుణించండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
x=\frac{9}{4}
\frac{5}{4}కు 1ని కూడండి.
x=\frac{9}{4},y=-\frac{15}{4}
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
3x+y=3,5x-y=15
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}3&1\\5&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\15\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}3&1\\5&-1\end{matrix}\right))\left(\begin{matrix}3&1\\5&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\5&-1\end{matrix}\right))\left(\begin{matrix}3\\15\end{matrix}\right)
\left(\begin{matrix}3&1\\5&-1\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\5&-1\end{matrix}\right))\left(\begin{matrix}3\\15\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\5&-1\end{matrix}\right))\left(\begin{matrix}3\\15\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3\left(-1\right)-5}&-\frac{1}{3\left(-1\right)-5}\\-\frac{5}{3\left(-1\right)-5}&\frac{3}{3\left(-1\right)-5}\end{matrix}\right)\left(\begin{matrix}3\\15\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{8}&\frac{1}{8}\\\frac{5}{8}&-\frac{3}{8}\end{matrix}\right)\left(\begin{matrix}3\\15\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{8}\times 3+\frac{1}{8}\times 15\\\frac{5}{8}\times 3-\frac{3}{8}\times 15\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{4}\\-\frac{15}{4}\end{matrix}\right)
అంకగణితము చేయండి.
x=\frac{9}{4},y=-\frac{15}{4}
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
3x+y=3,5x-y=15
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
5\times 3x+5y=5\times 3,3\times 5x+3\left(-1\right)y=3\times 15
3x మరియు 5xని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను 5తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను 3తో గుణించండి.
15x+5y=15,15x-3y=45
సరళీకృతం చేయండి.
15x-15x+5y+3y=15-45
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా 15x-3y=45ని 15x+5y=15 నుండి వ్యవకలనం చేయండి.
5y+3y=15-45
-15xకు 15xని కూడండి. 15x మరియు -15x విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
8y=15-45
3yకు 5yని కూడండి.
8y=-30
-45కు 15ని కూడండి.
y=-\frac{15}{4}
రెండు వైపులా 8తో భాగించండి.
5x-\left(-\frac{15}{4}\right)=15
5x-y=15లో yను -\frac{15}{4} స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
5x=\frac{45}{4}
సమీకరణము యొక్క రెండు భాగాల నుండి \frac{15}{4}ని వ్యవకలనం చేయండి.
x=\frac{9}{4}
రెండు వైపులా 5తో భాగించండి.
x=\frac{9}{4},y=-\frac{15}{4}
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.