మెయిన్ కంటెంట్ కు వెళ్లండి
x, yని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

3x+2y=10,7x-8y=-2
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
3x+2y=10
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
3x=-2y+10
సమీకరణము యొక్క రెండు భాగాల నుండి 2yని వ్యవకలనం చేయండి.
x=\frac{1}{3}\left(-2y+10\right)
రెండు వైపులా 3తో భాగించండి.
x=-\frac{2}{3}y+\frac{10}{3}
\frac{1}{3} సార్లు -2y+10ని గుణించండి.
7\left(-\frac{2}{3}y+\frac{10}{3}\right)-8y=-2
మరొక సమీకరణములో xను \frac{-2y+10}{3} స్థానంలో ప్రతిక్షేపించండి, 7x-8y=-2.
-\frac{14}{3}y+\frac{70}{3}-8y=-2
7 సార్లు \frac{-2y+10}{3}ని గుణించండి.
-\frac{38}{3}y+\frac{70}{3}=-2
-8yకు -\frac{14y}{3}ని కూడండి.
-\frac{38}{3}y=-\frac{76}{3}
సమీకరణము యొక్క రెండు భాగాల నుండి \frac{70}{3}ని వ్యవకలనం చేయండి.
y=2
సమీకరణము యొక్క రెండు వైపులా -\frac{38}{3}తో భాగించండి, ఇది భిన్నము యొక్క విలోమరాశులతో రెండు వైపులా గుణించడంతో సమానం.
x=-\frac{2}{3}\times 2+\frac{10}{3}
x=-\frac{2}{3}y+\frac{10}{3}లో yను 2 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=\frac{-4+10}{3}
-\frac{2}{3} సార్లు 2ని గుణించండి.
x=2
ఉమ్మడి హారమును కనుగొనడం మరియు లవములను కూడటం ద్వారా -\frac{4}{3}కు \frac{10}{3}ని కూడండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
x=2,y=2
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
3x+2y=10,7x-8y=-2
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}3&2\\7&-8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\-2\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}3&2\\7&-8\end{matrix}\right))\left(\begin{matrix}3&2\\7&-8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\7&-8\end{matrix}\right))\left(\begin{matrix}10\\-2\end{matrix}\right)
\left(\begin{matrix}3&2\\7&-8\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\7&-8\end{matrix}\right))\left(\begin{matrix}10\\-2\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\7&-8\end{matrix}\right))\left(\begin{matrix}10\\-2\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{8}{3\left(-8\right)-2\times 7}&-\frac{2}{3\left(-8\right)-2\times 7}\\-\frac{7}{3\left(-8\right)-2\times 7}&\frac{3}{3\left(-8\right)-2\times 7}\end{matrix}\right)\left(\begin{matrix}10\\-2\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{19}&\frac{1}{19}\\\frac{7}{38}&-\frac{3}{38}\end{matrix}\right)\left(\begin{matrix}10\\-2\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{19}\times 10+\frac{1}{19}\left(-2\right)\\\frac{7}{38}\times 10-\frac{3}{38}\left(-2\right)\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\2\end{matrix}\right)
అంకగణితము చేయండి.
x=2,y=2
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
3x+2y=10,7x-8y=-2
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
7\times 3x+7\times 2y=7\times 10,3\times 7x+3\left(-8\right)y=3\left(-2\right)
3x మరియు 7xని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను 7తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను 3తో గుణించండి.
21x+14y=70,21x-24y=-6
సరళీకృతం చేయండి.
21x-21x+14y+24y=70+6
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా 21x-24y=-6ని 21x+14y=70 నుండి వ్యవకలనం చేయండి.
14y+24y=70+6
-21xకు 21xని కూడండి. 21x మరియు -21x విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
38y=70+6
24yకు 14yని కూడండి.
38y=76
6కు 70ని కూడండి.
y=2
రెండు వైపులా 38తో భాగించండి.
7x-8\times 2=-2
7x-8y=-2లో yను 2 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
7x-16=-2
-8 సార్లు 2ని గుణించండి.
7x=14
సమీకరణం యొక్క రెండు వైపులా 16ని కూడండి.
x=2
రెండు వైపులా 7తో భాగించండి.
x=2,y=2
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.