మెయిన్ కంటెంట్ కు వెళ్లండి
x, yని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

3x+2-4y=0
మొదటి సమీకరణాన్ని పరిగణించండి. రెండు భాగాల నుండి 4yని వ్యవకలనం చేయండి.
3x-4y=-2
రెండు భాగాల నుండి 2ని వ్యవకలనం చేయండి. సున్నా నుండి ఏ సంఖ్యను తీసివేసినా కూడా దాని రుణాత్మక రూపం వస్తుంది.
3x-4y=-2,x+y=10
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
3x-4y=-2
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
3x=4y-2
సమీకరణం యొక్క రెండు వైపులా 4yని కూడండి.
x=\frac{1}{3}\left(4y-2\right)
రెండు వైపులా 3తో భాగించండి.
x=\frac{4}{3}y-\frac{2}{3}
\frac{1}{3} సార్లు 4y-2ని గుణించండి.
\frac{4}{3}y-\frac{2}{3}+y=10
మరొక సమీకరణములో xను \frac{4y-2}{3} స్థానంలో ప్రతిక్షేపించండి, x+y=10.
\frac{7}{3}y-\frac{2}{3}=10
yకు \frac{4y}{3}ని కూడండి.
\frac{7}{3}y=\frac{32}{3}
సమీకరణం యొక్క రెండు వైపులా \frac{2}{3}ని కూడండి.
y=\frac{32}{7}
సమీకరణము యొక్క రెండు వైపులా \frac{7}{3}తో భాగించండి, ఇది భిన్నము యొక్క విలోమరాశులతో రెండు వైపులా గుణించడంతో సమానం.
x=\frac{4}{3}\times \frac{32}{7}-\frac{2}{3}
x=\frac{4}{3}y-\frac{2}{3}లో yను \frac{32}{7} స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=\frac{128}{21}-\frac{2}{3}
లవమును లవంసార్లు మరియు హారమును హారముసార్లు గుణించడం ద్వారా \frac{4}{3} సార్లు \frac{32}{7}ని గుణించండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
x=\frac{38}{7}
ఉమ్మడి హారమును కనుగొనడం మరియు లవములను కూడటం ద్వారా \frac{128}{21}కు -\frac{2}{3}ని కూడండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
x=\frac{38}{7},y=\frac{32}{7}
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
3x+2-4y=0
మొదటి సమీకరణాన్ని పరిగణించండి. రెండు భాగాల నుండి 4yని వ్యవకలనం చేయండి.
3x-4y=-2
రెండు భాగాల నుండి 2ని వ్యవకలనం చేయండి. సున్నా నుండి ఏ సంఖ్యను తీసివేసినా కూడా దాని రుణాత్మక రూపం వస్తుంది.
3x-4y=-2,x+y=10
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}3&-4\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\10\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}3&-4\\1&1\end{matrix}\right))\left(\begin{matrix}3&-4\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-4\\1&1\end{matrix}\right))\left(\begin{matrix}-2\\10\end{matrix}\right)
\left(\begin{matrix}3&-4\\1&1\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-4\\1&1\end{matrix}\right))\left(\begin{matrix}-2\\10\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-4\\1&1\end{matrix}\right))\left(\begin{matrix}-2\\10\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3-\left(-4\right)}&-\frac{-4}{3-\left(-4\right)}\\-\frac{1}{3-\left(-4\right)}&\frac{3}{3-\left(-4\right)}\end{matrix}\right)\left(\begin{matrix}-2\\10\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}&\frac{4}{7}\\-\frac{1}{7}&\frac{3}{7}\end{matrix}\right)\left(\begin{matrix}-2\\10\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}\left(-2\right)+\frac{4}{7}\times 10\\-\frac{1}{7}\left(-2\right)+\frac{3}{7}\times 10\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{38}{7}\\\frac{32}{7}\end{matrix}\right)
అంకగణితము చేయండి.
x=\frac{38}{7},y=\frac{32}{7}
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
3x+2-4y=0
మొదటి సమీకరణాన్ని పరిగణించండి. రెండు భాగాల నుండి 4yని వ్యవకలనం చేయండి.
3x-4y=-2
రెండు భాగాల నుండి 2ని వ్యవకలనం చేయండి. సున్నా నుండి ఏ సంఖ్యను తీసివేసినా కూడా దాని రుణాత్మక రూపం వస్తుంది.
3x-4y=-2,x+y=10
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
3x-4y=-2,3x+3y=3\times 10
3x మరియు xని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను 1తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను 3తో గుణించండి.
3x-4y=-2,3x+3y=30
సరళీకృతం చేయండి.
3x-3x-4y-3y=-2-30
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా 3x+3y=30ని 3x-4y=-2 నుండి వ్యవకలనం చేయండి.
-4y-3y=-2-30
-3xకు 3xని కూడండి. 3x మరియు -3x విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
-7y=-2-30
-3yకు -4yని కూడండి.
-7y=-32
-30కు -2ని కూడండి.
y=\frac{32}{7}
రెండు వైపులా -7తో భాగించండి.
x+\frac{32}{7}=10
x+y=10లో yను \frac{32}{7} స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=\frac{38}{7}
సమీకరణము యొక్క రెండు భాగాల నుండి \frac{32}{7}ని వ్యవకలనం చేయండి.
x=\frac{38}{7},y=\frac{32}{7}
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.