మెయిన్ కంటెంట్ కు వెళ్లండి
x, yని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

2x+3y=-1,4x+y=3
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
2x+3y=-1
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
2x=-3y-1
సమీకరణము యొక్క రెండు భాగాల నుండి 3yని వ్యవకలనం చేయండి.
x=\frac{1}{2}\left(-3y-1\right)
రెండు వైపులా 2తో భాగించండి.
x=-\frac{3}{2}y-\frac{1}{2}
\frac{1}{2} సార్లు -3y-1ని గుణించండి.
4\left(-\frac{3}{2}y-\frac{1}{2}\right)+y=3
మరొక సమీకరణములో xను \frac{-3y-1}{2} స్థానంలో ప్రతిక్షేపించండి, 4x+y=3.
-6y-2+y=3
4 సార్లు \frac{-3y-1}{2}ని గుణించండి.
-5y-2=3
yకు -6yని కూడండి.
-5y=5
సమీకరణం యొక్క రెండు వైపులా 2ని కూడండి.
y=-1
రెండు వైపులా -5తో భాగించండి.
x=-\frac{3}{2}\left(-1\right)-\frac{1}{2}
x=-\frac{3}{2}y-\frac{1}{2}లో yను -1 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=\frac{3-1}{2}
-\frac{3}{2} సార్లు -1ని గుణించండి.
x=1
ఉమ్మడి హారమును కనుగొనడం మరియు లవములను కూడటం ద్వారా \frac{3}{2}కు -\frac{1}{2}ని కూడండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
x=1,y=-1
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
2x+3y=-1,4x+y=3
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}2&3\\4&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\3\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}2&3\\4&1\end{matrix}\right))\left(\begin{matrix}2&3\\4&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\4&1\end{matrix}\right))\left(\begin{matrix}-1\\3\end{matrix}\right)
\left(\begin{matrix}2&3\\4&1\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\4&1\end{matrix}\right))\left(\begin{matrix}-1\\3\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\4&1\end{matrix}\right))\left(\begin{matrix}-1\\3\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2-3\times 4}&-\frac{3}{2-3\times 4}\\-\frac{4}{2-3\times 4}&\frac{2}{2-3\times 4}\end{matrix}\right)\left(\begin{matrix}-1\\3\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{10}&\frac{3}{10}\\\frac{2}{5}&-\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}-1\\3\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{10}\left(-1\right)+\frac{3}{10}\times 3\\\frac{2}{5}\left(-1\right)-\frac{1}{5}\times 3\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-1\end{matrix}\right)
అంకగణితము చేయండి.
x=1,y=-1
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
2x+3y=-1,4x+y=3
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
4\times 2x+4\times 3y=4\left(-1\right),2\times 4x+2y=2\times 3
2x మరియు 4xని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను 4తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను 2తో గుణించండి.
8x+12y=-4,8x+2y=6
సరళీకృతం చేయండి.
8x-8x+12y-2y=-4-6
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా 8x+2y=6ని 8x+12y=-4 నుండి వ్యవకలనం చేయండి.
12y-2y=-4-6
-8xకు 8xని కూడండి. 8x మరియు -8x విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
10y=-4-6
-2yకు 12yని కూడండి.
10y=-10
-6కు -4ని కూడండి.
y=-1
రెండు వైపులా 10తో భాగించండి.
4x-1=3
4x+y=3లో yను -1 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
4x=4
సమీకరణం యొక్క రెండు వైపులా 1ని కూడండి.
x=1
రెండు వైపులా 4తో భాగించండి.
x=1,y=-1
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.