మెయిన్ కంటెంట్ కు వెళ్లండి
x, yని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

3x-2\left(y+1\right)=6
మొదటి సమీకరణాన్ని పరిగణించండి. సమీకరణం రెండు వైపులా 6తో గుణించండి, కనిష్ట సామాన్య గుణిజము 2,3.
3x-2y-2=6
y+1తో -2ని గుణించడం కోసం పంచి యిచ్చెడు నియమాన్ని ఉపయోగించండి.
3x-2y=6+2
రెండు వైపులా 2ని జోడించండి.
3x-2y=8
8ని పొందడం కోసం 6 మరియు 2ని కూడండి.
3x-2y=8,3x+2y=4
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
3x-2y=8
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
3x=2y+8
సమీకరణం యొక్క రెండు వైపులా 2yని కూడండి.
x=\frac{1}{3}\left(2y+8\right)
రెండు వైపులా 3తో భాగించండి.
x=\frac{2}{3}y+\frac{8}{3}
\frac{1}{3} సార్లు 8+2yని గుణించండి.
3\left(\frac{2}{3}y+\frac{8}{3}\right)+2y=4
మరొక సమీకరణములో xను \frac{8+2y}{3} స్థానంలో ప్రతిక్షేపించండి, 3x+2y=4.
2y+8+2y=4
3 సార్లు \frac{8+2y}{3}ని గుణించండి.
4y+8=4
2yకు 2yని కూడండి.
4y=-4
సమీకరణము యొక్క రెండు భాగాల నుండి 8ని వ్యవకలనం చేయండి.
y=-1
రెండు వైపులా 4తో భాగించండి.
x=\frac{2}{3}\left(-1\right)+\frac{8}{3}
x=\frac{2}{3}y+\frac{8}{3}లో yను -1 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=\frac{-2+8}{3}
\frac{2}{3} సార్లు -1ని గుణించండి.
x=2
ఉమ్మడి హారమును కనుగొనడం మరియు లవములను కూడటం ద్వారా -\frac{2}{3}కు \frac{8}{3}ని కూడండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
x=2,y=-1
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
3x-2\left(y+1\right)=6
మొదటి సమీకరణాన్ని పరిగణించండి. సమీకరణం రెండు వైపులా 6తో గుణించండి, కనిష్ట సామాన్య గుణిజము 2,3.
3x-2y-2=6
y+1తో -2ని గుణించడం కోసం పంచి యిచ్చెడు నియమాన్ని ఉపయోగించండి.
3x-2y=6+2
రెండు వైపులా 2ని జోడించండి.
3x-2y=8
8ని పొందడం కోసం 6 మరియు 2ని కూడండి.
3x-2y=8,3x+2y=4
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}3&-2\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\4\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}3&-2\\3&2\end{matrix}\right))\left(\begin{matrix}3&-2\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\3&2\end{matrix}\right))\left(\begin{matrix}8\\4\end{matrix}\right)
\left(\begin{matrix}3&-2\\3&2\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\3&2\end{matrix}\right))\left(\begin{matrix}8\\4\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\3&2\end{matrix}\right))\left(\begin{matrix}8\\4\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3\times 2-\left(-2\times 3\right)}&-\frac{-2}{3\times 2-\left(-2\times 3\right)}\\-\frac{3}{3\times 2-\left(-2\times 3\right)}&\frac{3}{3\times 2-\left(-2\times 3\right)}\end{matrix}\right)\left(\begin{matrix}8\\4\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}&\frac{1}{6}\\-\frac{1}{4}&\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}8\\4\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}\times 8+\frac{1}{6}\times 4\\-\frac{1}{4}\times 8+\frac{1}{4}\times 4\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\-1\end{matrix}\right)
అంకగణితము చేయండి.
x=2,y=-1
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
3x-2\left(y+1\right)=6
మొదటి సమీకరణాన్ని పరిగణించండి. సమీకరణం రెండు వైపులా 6తో గుణించండి, కనిష్ట సామాన్య గుణిజము 2,3.
3x-2y-2=6
y+1తో -2ని గుణించడం కోసం పంచి యిచ్చెడు నియమాన్ని ఉపయోగించండి.
3x-2y=6+2
రెండు వైపులా 2ని జోడించండి.
3x-2y=8
8ని పొందడం కోసం 6 మరియు 2ని కూడండి.
3x-2y=8,3x+2y=4
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
3x-3x-2y-2y=8-4
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా 3x+2y=4ని 3x-2y=8 నుండి వ్యవకలనం చేయండి.
-2y-2y=8-4
-3xకు 3xని కూడండి. 3x మరియు -3x విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
-4y=8-4
-2yకు -2yని కూడండి.
-4y=4
-4కు 8ని కూడండి.
y=-1
రెండు వైపులా -4తో భాగించండి.
3x+2\left(-1\right)=4
3x+2y=4లో yను -1 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
3x-2=4
2 సార్లు -1ని గుణించండి.
3x=6
సమీకరణం యొక్క రెండు వైపులా 2ని కూడండి.
x=2
రెండు వైపులా 3తో భాగించండి.
x=2,y=-1
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.