మెయిన్ కంటెంట్ కు వెళ్లండి
మూల్యాంకనం చేయండి
Tick mark Image

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

\int x^{3}-6x^{2}+5x\mathrm{d}x
అనిశ్చితమైన పూర్ణాంక ప్రమేయాన్ని మూల్యాంకనం చేయండి.
\int x^{3}\mathrm{d}x+\int -6x^{2}\mathrm{d}x+\int 5x\mathrm{d}x
మొత్తం పదాన్ని పదం ద్వారా సమగ్రపరచండి.
\int x^{3}\mathrm{d}x-6\int x^{2}\mathrm{d}x+5\int x\mathrm{d}x
ప్రతి పదంలో స్థిరాంకం లబ్దమూలాన్ని తీసివేయి.
\frac{x^{4}}{4}-6\int x^{2}\mathrm{d}x+5\int x\mathrm{d}x
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1కోసం కాబట్టి, \int x^{3}\mathrm{d}x ను \frac{x^{4}}{4}తో భర్తీ చేయండి.
\frac{x^{4}}{4}-2x^{3}+5\int x\mathrm{d}x
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1కోసం కాబట్టి, \int x^{2}\mathrm{d}x ను \frac{x^{3}}{3}తో భర్తీ చేయండి. -6 సార్లు \frac{x^{3}}{3}ని గుణించండి.
\frac{x^{4}}{4}-2x^{3}+\frac{5x^{2}}{2}
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1కోసం కాబట్టి, \int x\mathrm{d}x ను \frac{x^{2}}{2}తో భర్తీ చేయండి. 5 సార్లు \frac{x^{2}}{2}ని గుణించండి.
\frac{1^{4}}{4}-2\times 1^{3}+\frac{5}{2}\times 1^{2}-\left(\frac{0^{4}}{4}-2\times 0^{3}+\frac{5}{2}\times 0^{2}\right)
నిశ్చితమైన అనుకలము అనేది అనుకలము యొక్క ఎగువ పరిమితితో మూల్యాంకనం చేయబడిన సూత్రీకరణ యొక్క ప్రతి-వ్యుత్పన్నము నుండి అనుకలము యొక్క దిగువ పరిమితితో మూల్యాంకనం చేయబడిన ప్రతి-వ్యుత్పన్నమును వ్యవకలనము చేసిన మొత్తంతో సమానం.
\frac{3}{4}
సరళీకృతం చేయండి.