మూల్యాంకనం చేయండి
8x^{14}+16x^{8}+16x^{7}+8x^{2}+16x+С
x ఆధారంగా వేరు పరచండి
16\left(7x^{6}+1\right)\left(x^{7}+x+1\right)
షేర్ చేయి
క్లిప్బోర్డ్కు కాపీ చేయబడింది
\int 112x^{13}+128x^{7}+16x+112x^{6}+16\mathrm{d}x
4x^{7}+4x+4ని 28x^{6}+4ని గుణించి, సారూప్య అంశాలను కలపడం కోసం డిస్ట్రిబ్యూటివ్ లక్షణాన్ని ఉపయోగించండి.
\int 112x^{13}\mathrm{d}x+\int 128x^{7}\mathrm{d}x+\int 16x\mathrm{d}x+\int 112x^{6}\mathrm{d}x+\int 16\mathrm{d}x
మొత్తం పదాన్ని పదం ద్వారా సమగ్రపరచండి.
112\int x^{13}\mathrm{d}x+128\int x^{7}\mathrm{d}x+16\int x\mathrm{d}x+112\int x^{6}\mathrm{d}x+\int 16\mathrm{d}x
ప్రతి పదంలో స్థిరాంకం లబ్దమూలాన్ని తీసివేయి.
8x^{14}+128\int x^{7}\mathrm{d}x+16\int x\mathrm{d}x+112\int x^{6}\mathrm{d}x+\int 16\mathrm{d}x
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1కోసం కాబట్టి, \int x^{13}\mathrm{d}x ను \frac{x^{14}}{14}తో భర్తీ చేయండి. 112 సార్లు \frac{x^{14}}{14}ని గుణించండి.
8x^{14}+16x^{8}+16\int x\mathrm{d}x+112\int x^{6}\mathrm{d}x+\int 16\mathrm{d}x
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1కోసం కాబట్టి, \int x^{7}\mathrm{d}x ను \frac{x^{8}}{8}తో భర్తీ చేయండి. 128 సార్లు \frac{x^{8}}{8}ని గుణించండి.
8x^{14}+16x^{8}+8x^{2}+112\int x^{6}\mathrm{d}x+\int 16\mathrm{d}x
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1కోసం కాబట్టి, \int x\mathrm{d}x ను \frac{x^{2}}{2}తో భర్తీ చేయండి. 16 సార్లు \frac{x^{2}}{2}ని గుణించండి.
8x^{14}+16x^{8}+8x^{2}+16x^{7}+\int 16\mathrm{d}x
\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1కోసం కాబట్టి, \int x^{6}\mathrm{d}x ను \frac{x^{7}}{7}తో భర్తీ చేయండి. 112 సార్లు \frac{x^{7}}{7}ని గుణించండి.
8x^{14}+16x^{8}+8x^{2}+16x^{7}+16x
సాధారణ సమగ్ర నియమం \int a\mathrm{d}x=axయొక్క పట్టికను ఉపయోగించి 16యొక్క పూర్ణాంకమను కనుగొనండి.
8x^{14}+16x^{8}+16x^{7}+8x^{2}+16x+С
f\left(x\right)యొక్క యాంటీడిరివేటివ్ F\left(x\right)అయితే, అప్పుడు f\left(x\right)యొక్క అన్ని యాంటీడిరివేటివ్స్ సమితి F\left(x\right)+C ద్వారా ఇవ్వబడుతుంది. అందువల్ల, ఫలితానికి ఏకీకరణ యొక్క స్థిరాంకం C\in \mathrm{R}ని జోడించండి.
ఉదాహరణలు
వర్గ సమీకరణం
{ x } ^ { 2 } - 4 x - 5 = 0
త్రికోణమితి
4 \sin \theta \cos \theta = 2 \sin \theta
రేఖీయ సమీకరణం
y = 3x + 4
అరిథ్మెటిక్
699 * 533
మాత్రిక
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ఏకకాల సమీకరణం
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
అవకలనం
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
అనుకలనం
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
పరిమితులు
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}