మెయిన్ కంటెంట్ కు వెళ్లండి
మూల్యాంకనం చేయండి
Tick mark Image
x ఆధారంగా వేరు పరచండి
Tick mark Image

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\left(x+2\right)x^{2}}{x\left(x-1\right)})
ఇప్పటికే \frac{x^{2}\left(2+x\right)}{x^{2}-x}లో గుణకం చేయని సూత్రీకరణలను గుణకం చేయండి.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x\left(x+2\right)}{x-1})
లవము మరియు హారము రెండింటిలో xని పరిష్కరించండి.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{2}+2x}{x-1})
x+2తో xని గుణించడం కోసం పంచి యిచ్చెడు నియమాన్ని ఉపయోగించండి.
\frac{\left(x^{1}-1\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}+2x^{1})-\left(x^{2}+2x^{1}\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}-1)}{\left(x^{1}-1\right)^{2}}
ఏవైనా రెండు అవకలనీయ ఫలముల కోసం, రెండు ఫలముల యొక్క భాగాహారలబ్ధము యొక్క వ్యుత్పన్నము అనేది లవము యొక్క వ్యుత్పన్నమును హారముసార్లు గుణించిన దాని నుండి హారము యొక్క వ్యుత్పన్నమును లవముసార్లు గుణించిన తర్వాత హారము వర్గాన్ని మొత్తంగా భాగించిన దానితో సమానం.
\frac{\left(x^{1}-1\right)\left(2x^{2-1}+2x^{1-1}\right)-\left(x^{2}+2x^{1}\right)x^{1-1}}{\left(x^{1}-1\right)^{2}}
బహుపదం యొక్క వ్యుత్పన్నం అనేది దాని రాశుల యొక్క వ్యుత్పన్నముల మొత్తం. ఏ రాశి యొక్క వ్యుత్పన్నం అయినా 0. nax^{n-1} యొక్క వ్యుత్పన్నం ax^{n}.
\frac{\left(x^{1}-1\right)\left(2x^{1}+2x^{0}\right)-\left(x^{2}+2x^{1}\right)x^{0}}{\left(x^{1}-1\right)^{2}}
సరళీకృతం చేయండి.
\frac{x^{1}\times 2x^{1}+x^{1}\times 2x^{0}-2x^{1}-2x^{0}-\left(x^{2}+2x^{1}\right)x^{0}}{\left(x^{1}-1\right)^{2}}
x^{1}-1 సార్లు 2x^{1}+2x^{0}ని గుణించండి.
\frac{x^{1}\times 2x^{1}+x^{1}\times 2x^{0}-2x^{1}-2x^{0}-\left(x^{2}x^{0}+2x^{1}x^{0}\right)}{\left(x^{1}-1\right)^{2}}
x^{2}+2x^{1} సార్లు x^{0}ని గుణించండి.
\frac{2x^{1+1}+2x^{1}-2x^{1}-2x^{0}-\left(x^{2}+2x^{1}\right)}{\left(x^{1}-1\right)^{2}}
ఒకే పీఠము యొక్క ఘాతములను గుణించడం కోసం వాటి ఘాతాంకాలను కూడండి.
\frac{2x^{2}+2x^{1}-2x^{1}-2x^{0}-\left(x^{2}+2x^{1}\right)}{\left(x^{1}-1\right)^{2}}
సరళీకృతం చేయండి.
\frac{x^{2}-2x^{1}-2x^{0}}{\left(x^{1}-1\right)^{2}}
ఒకే రకమైన పదాలను జత చేయండి.
\frac{x^{2}-2x-2x^{0}}{\left(x-1\right)^{2}}
ఏ విలువకు అయినా t, t^{1}=t.
\frac{x^{2}-2x-2}{\left(x-1\right)^{2}}
0కి మినహా ఏ విలువకు అయినా t, t^{0}=1.