మెయిన్ కంటెంట్ కు వెళ్లండి
xని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

\left(x-1\right)\times 9-x\left(x+3\right)=0
సున్నాతో భాగించడం సాధ్యం కాదు కనుక వేరియబుల్ x అన్నది -7,0,1 విలువలలో దేనితోనూ సమానంగా ఉండకూడదు. సమీకరణం రెండు వైపులా x\left(x-1\right)\left(x+7\right)తో గుణించండి, కనిష్ట సామాన్య గుణిజము x^{2}+7x,x^{2}+6x-7.
9x-9-x\left(x+3\right)=0
9తో x-1ని గుణించడం కోసం పంచి యిచ్చెడు నియమాన్ని ఉపయోగించండి.
9x-9-\left(x^{2}+3x\right)=0
x+3తో xని గుణించడం కోసం పంచి యిచ్చెడు నియమాన్ని ఉపయోగించండి.
9x-9-x^{2}-3x=0
x^{2}+3x యొక్క వ్యతిరేకాన్ని కనుగొనాలంటే, ప్రతి పదం యొక్క వ్యతిరేకాన్ని కనుగొనండి.
6x-9-x^{2}=0
6xని పొందడం కోసం 9x మరియు -3xని జత చేయండి.
-x^{2}+6x-9=0
దీనిని ప్రామాణిక రూపంలో పెట్టడం కోసం పాలినామియల్‌ను సరి చేయండి. పదాలను అత్యధిక పవర్ నుండి అతి తక్కువ పవర్ క్రమంలో క్రమీకరించండి.
a+b=6 ab=-\left(-9\right)=9
సమీకరణాన్ని పరిష్కరించడం కోసం, ఎడమ చేతి వైపును గ్రూప్ చేసి, ఫ్యాక్టర్ చేయండి. ముందుగా, ఎడమ చేతి వైపును -x^{2}+ax+bx-9 లాగా తిరిగి వ్రాయాలి. a, bను కనుగొనాలంటే, పరిష్కరించాల్సిన సిస్టమ్‌ను సెటప్ చేయాలి.
1,9 3,3
ab పాజిటివ్ కనుక, a మరియు b ఒకే గుర్తును కలిగి ఉంటాయి. a+b పాజిటివ్ కనుక, a మరియు b రెండూ పాజిటివ్‌గా ఉంటాయి. ప్రాడక్ట్ 9ని అందించగల అన్ని పెయిర్‌లను జాబితా చేయండి.
1+9=10 3+3=6
ప్రతి పెయిర్ యొక్క మొత్తాన్ని గణించండి.
a=3 b=3
సమ్ 6ను అందించే పెయిర్‌ మన పరిష్కారం.
\left(-x^{2}+3x\right)+\left(3x-9\right)
\left(-x^{2}+3x\right)+\left(3x-9\right)ని -x^{2}+6x-9 వలె తిరిగి వ్రాయండి.
-x\left(x-3\right)+3\left(x-3\right)
మొదటి సమూహంలో -x మరియు రెండవ సమూహంలో 3 ఫ్యాక్టర్ చేయండి.
\left(x-3\right)\left(-x+3\right)
డిస్ట్రిబ్యూటివ్ ప్రాపర్టీని ఉపయోగించి కామన్ టర్మ్ x-3ని ఫ్యాక్టర్ అవుట్ చేయండి.
x=3 x=3
సమీకరణ పరిష్కారాలను కనుగొనడం కోసం, x-3=0 మరియు -x+3=0ని పరిష్కరించండి.
\left(x-1\right)\times 9-x\left(x+3\right)=0
సున్నాతో భాగించడం సాధ్యం కాదు కనుక వేరియబుల్ x అన్నది -7,0,1 విలువలలో దేనితోనూ సమానంగా ఉండకూడదు. సమీకరణం రెండు వైపులా x\left(x-1\right)\left(x+7\right)తో గుణించండి, కనిష్ట సామాన్య గుణిజము x^{2}+7x,x^{2}+6x-7.
9x-9-x\left(x+3\right)=0
9తో x-1ని గుణించడం కోసం పంచి యిచ్చెడు నియమాన్ని ఉపయోగించండి.
9x-9-\left(x^{2}+3x\right)=0
x+3తో xని గుణించడం కోసం పంచి యిచ్చెడు నియమాన్ని ఉపయోగించండి.
9x-9-x^{2}-3x=0
x^{2}+3x యొక్క వ్యతిరేకాన్ని కనుగొనాలంటే, ప్రతి పదం యొక్క వ్యతిరేకాన్ని కనుగొనండి.
6x-9-x^{2}=0
6xని పొందడం కోసం 9x మరియు -3xని జత చేయండి.
-x^{2}+6x-9=0
వర్గ సూత్రాన్ని ఉపయోగించి రూపం ax^{2}+bx+c=0లోని అన్ని సమీకరణములను పరిష్కరించవచ్చు: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. వర్గ సూత్రంతో రెండు పరిష్కారాలు లభిస్తాయి, ±ని కూడినప్పుడు ఒకటి మరియు తీసివేసినప్పుడు మరొకటి.
x=\frac{-6±\sqrt{6^{2}-4\left(-1\right)\left(-9\right)}}{2\left(-1\right)}
ఈ సమీకరణం ప్రామాణిక ఆకృతిలో ఉంది: ax^{2}+bx+c=0. చతురస్రీయమైన సూత్రం \frac{-b±\sqrt{b^{2}-4ac}}{2a} a స్థానంలో -1, b స్థానంలో 6 మరియు c స్థానంలో -9 ప్రతిక్షేపించండి.
x=\frac{-6±\sqrt{36-4\left(-1\right)\left(-9\right)}}{2\left(-1\right)}
6 వర్గము.
x=\frac{-6±\sqrt{36+4\left(-9\right)}}{2\left(-1\right)}
-4 సార్లు -1ని గుణించండి.
x=\frac{-6±\sqrt{36-36}}{2\left(-1\right)}
4 సార్లు -9ని గుణించండి.
x=\frac{-6±\sqrt{0}}{2\left(-1\right)}
-36కు 36ని కూడండి.
x=-\frac{6}{2\left(-1\right)}
0 వర్గమూలాన్ని తీసుకోండి.
x=-\frac{6}{-2}
2 సార్లు -1ని గుణించండి.
x=3
-2తో -6ని భాగించండి.
\left(x-1\right)\times 9-x\left(x+3\right)=0
సున్నాతో భాగించడం సాధ్యం కాదు కనుక వేరియబుల్ x అన్నది -7,0,1 విలువలలో దేనితోనూ సమానంగా ఉండకూడదు. సమీకరణం రెండు వైపులా x\left(x-1\right)\left(x+7\right)తో గుణించండి, కనిష్ట సామాన్య గుణిజము x^{2}+7x,x^{2}+6x-7.
9x-9-x\left(x+3\right)=0
9తో x-1ని గుణించడం కోసం పంచి యిచ్చెడు నియమాన్ని ఉపయోగించండి.
9x-9-\left(x^{2}+3x\right)=0
x+3తో xని గుణించడం కోసం పంచి యిచ్చెడు నియమాన్ని ఉపయోగించండి.
9x-9-x^{2}-3x=0
x^{2}+3x యొక్క వ్యతిరేకాన్ని కనుగొనాలంటే, ప్రతి పదం యొక్క వ్యతిరేకాన్ని కనుగొనండి.
6x-9-x^{2}=0
6xని పొందడం కోసం 9x మరియు -3xని జత చేయండి.
6x-x^{2}=9
రెండు వైపులా 9ని జోడించండి. సున్నాతో ఏ సంఖ్యను కూడినా అదే సంఖ్య వస్తుంది.
-x^{2}+6x=9
చతరుస్రాన్ని పూర్తి చేయడం ద్వారా ఇటువంటి చతురస్రీయమైన సమీకరణాలను పరిష్కరించవచ్చు. చతురస్రాన్ని పూర్తి చేయాలంటే, సమీకరణం తప్పనిసరిగా x^{2}+bx=c ఆకృతిలో ఉండాలి.
\frac{-x^{2}+6x}{-1}=\frac{9}{-1}
రెండు వైపులా -1తో భాగించండి.
x^{2}+\frac{6}{-1}x=\frac{9}{-1}
-1తో భాగించడం ద్వారా -1 యొక్క గుణకారము చర్యరద్దు చేయబడుతుంది.
x^{2}-6x=\frac{9}{-1}
-1తో 6ని భాగించండి.
x^{2}-6x=-9
-1తో 9ని భాగించండి.
x^{2}-6x+\left(-3\right)^{2}=-9+\left(-3\right)^{2}
x రాశి యొక్క గుణకము -6ని 2తో భాగించి -3ని పొందండి. ఆపై సమీకరణము యొక్క రెండు వైపులా ఫలితానికి -3 యొక్క వర్గమును జోడించండి. సమీకరణము ఈ దశ తర్వాత ఎడమవైపు సంపూర్ణచతురస్రము.
x^{2}-6x+9=-9+9
-3 వర్గము.
x^{2}-6x+9=0
9కు -9ని కూడండి.
\left(x-3\right)^{2}=0
కారకం x^{2}-6x+9. సాధారణంగా, x^{2}+bx+c ఖచ్చితమైన చతురస్రం అయినప్పుడు అది ఎల్లప్పుడూ \left(x+\frac{b}{2}\right)^{2}గా కారకం చేయబడుతుంది.
\sqrt{\left(x-3\right)^{2}}=\sqrt{0}
సమీకరణము యొక్క రెండు భాగాల యొక్క లాగరిథమ్‌ను వర్గమూలాన్ని తీసుకోండి.
x-3=0 x-3=0
సరళీకృతం చేయండి.
x=3 x=3
సమీకరణం యొక్క రెండు వైపులా 3ని కూడండి.
x=3
సమీకరణం ఇప్పుడు పరిష్కరించబడింది. పరిష్కారాలు ఒకటే.