మెయిన్ కంటెంట్ కు వెళ్లండి
మూల్యాంకనం చేయండి
Tick mark Image
విస్తరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

\frac{3}{2}x-\frac{1}{2}x^{2}+3\left(x+1\right)\left(x-1\right)-x\left(x-1\right)^{2}+\left(x-1\right)^{3}-\frac{1}{2}\left(2x-8\right)
3-xతో \frac{1}{2}xని గుణించడం కోసం పంచి యిచ్చెడు నియమాన్ని ఉపయోగించండి.
\frac{3}{2}x-\frac{1}{2}x^{2}+\left(3x+3\right)\left(x-1\right)-x\left(x-1\right)^{2}+\left(x-1\right)^{3}-\frac{1}{2}\left(2x-8\right)
x+1తో 3ని గుణించడం కోసం పంచి యిచ్చెడు నియమాన్ని ఉపయోగించండి.
\frac{3}{2}x-\frac{1}{2}x^{2}+3x^{2}-3-x\left(x-1\right)^{2}+\left(x-1\right)^{3}-\frac{1}{2}\left(2x-8\right)
3x+3ని x-1ని గుణించి, సారూప్య అంశాలను కలపడం కోసం డిస్ట్రిబ్యూటివ్ లక్షణాన్ని ఉపయోగించండి.
\frac{3}{2}x+\frac{5}{2}x^{2}-3-x\left(x-1\right)^{2}+\left(x-1\right)^{3}-\frac{1}{2}\left(2x-8\right)
\frac{5}{2}x^{2}ని పొందడం కోసం -\frac{1}{2}x^{2} మరియు 3x^{2}ని జత చేయండి.
\frac{3}{2}x+\frac{5}{2}x^{2}-3-x\left(x^{2}-2x+1\right)+\left(x-1\right)^{3}-\frac{1}{2}\left(2x-8\right)
\left(x-1\right)^{2}ని విస్తరించడం కోసం ద్విపద సిద్ధాంతాన్ని \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ఉపయోగించండి.
\frac{3}{2}x+\frac{5}{2}x^{2}-3-\left(x^{3}-2x^{2}+x\right)+\left(x-1\right)^{3}-\frac{1}{2}\left(2x-8\right)
x^{2}-2x+1తో xని గుణించడం కోసం పంచి యిచ్చెడు నియమాన్ని ఉపయోగించండి.
\frac{3}{2}x+\frac{5}{2}x^{2}-3-x^{3}+2x^{2}-x+\left(x-1\right)^{3}-\frac{1}{2}\left(2x-8\right)
x^{3}-2x^{2}+x యొక్క వ్యతిరేకాన్ని కనుగొనాలంటే, ప్రతి పదం యొక్క వ్యతిరేకాన్ని కనుగొనండి.
\frac{3}{2}x+\frac{9}{2}x^{2}-3-x^{3}-x+\left(x-1\right)^{3}-\frac{1}{2}\left(2x-8\right)
\frac{9}{2}x^{2}ని పొందడం కోసం \frac{5}{2}x^{2} మరియు 2x^{2}ని జత చేయండి.
\frac{1}{2}x+\frac{9}{2}x^{2}-3-x^{3}+\left(x-1\right)^{3}-\frac{1}{2}\left(2x-8\right)
\frac{1}{2}xని పొందడం కోసం \frac{3}{2}x మరియు -xని జత చేయండి.
\frac{1}{2}x+\frac{9}{2}x^{2}-3-x^{3}+x^{3}-3x^{2}+3x-1-\frac{1}{2}\left(2x-8\right)
\left(x-1\right)^{3}ని విస్తరించడం కోసం ద్విపద సిద్ధాంతాన్ని \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} ఉపయోగించండి.
\frac{1}{2}x+\frac{9}{2}x^{2}-3-3x^{2}+3x-1-\frac{1}{2}\left(2x-8\right)
0ని పొందడం కోసం -x^{3} మరియు x^{3}ని జత చేయండి.
\frac{1}{2}x+\frac{3}{2}x^{2}-3+3x-1-\frac{1}{2}\left(2x-8\right)
\frac{3}{2}x^{2}ని పొందడం కోసం \frac{9}{2}x^{2} మరియు -3x^{2}ని జత చేయండి.
\frac{7}{2}x+\frac{3}{2}x^{2}-3-1-\frac{1}{2}\left(2x-8\right)
\frac{7}{2}xని పొందడం కోసం \frac{1}{2}x మరియు 3xని జత చేయండి.
\frac{7}{2}x+\frac{3}{2}x^{2}-4-\frac{1}{2}\left(2x-8\right)
-4ని పొందడం కోసం 1ని -3 నుండి వ్యవకలనం చేయండి.
\frac{7}{2}x+\frac{3}{2}x^{2}-4-x+4
2x-8తో -\frac{1}{2}ని గుణించడం కోసం పంచి యిచ్చెడు నియమాన్ని ఉపయోగించండి.
\frac{5}{2}x+\frac{3}{2}x^{2}-4+4
\frac{5}{2}xని పొందడం కోసం \frac{7}{2}x మరియు -xని జత చేయండి.
\frac{5}{2}x+\frac{3}{2}x^{2}
0ని పొందడం కోసం -4 మరియు 4ని కూడండి.
\frac{3}{2}x-\frac{1}{2}x^{2}+3\left(x+1\right)\left(x-1\right)-x\left(x-1\right)^{2}+\left(x-1\right)^{3}-\frac{1}{2}\left(2x-8\right)
3-xతో \frac{1}{2}xని గుణించడం కోసం పంచి యిచ్చెడు నియమాన్ని ఉపయోగించండి.
\frac{3}{2}x-\frac{1}{2}x^{2}+\left(3x+3\right)\left(x-1\right)-x\left(x-1\right)^{2}+\left(x-1\right)^{3}-\frac{1}{2}\left(2x-8\right)
x+1తో 3ని గుణించడం కోసం పంచి యిచ్చెడు నియమాన్ని ఉపయోగించండి.
\frac{3}{2}x-\frac{1}{2}x^{2}+3x^{2}-3-x\left(x-1\right)^{2}+\left(x-1\right)^{3}-\frac{1}{2}\left(2x-8\right)
3x+3ని x-1ని గుణించి, సారూప్య అంశాలను కలపడం కోసం డిస్ట్రిబ్యూటివ్ లక్షణాన్ని ఉపయోగించండి.
\frac{3}{2}x+\frac{5}{2}x^{2}-3-x\left(x-1\right)^{2}+\left(x-1\right)^{3}-\frac{1}{2}\left(2x-8\right)
\frac{5}{2}x^{2}ని పొందడం కోసం -\frac{1}{2}x^{2} మరియు 3x^{2}ని జత చేయండి.
\frac{3}{2}x+\frac{5}{2}x^{2}-3-x\left(x^{2}-2x+1\right)+\left(x-1\right)^{3}-\frac{1}{2}\left(2x-8\right)
\left(x-1\right)^{2}ని విస్తరించడం కోసం ద్విపద సిద్ధాంతాన్ని \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ఉపయోగించండి.
\frac{3}{2}x+\frac{5}{2}x^{2}-3-\left(x^{3}-2x^{2}+x\right)+\left(x-1\right)^{3}-\frac{1}{2}\left(2x-8\right)
x^{2}-2x+1తో xని గుణించడం కోసం పంచి యిచ్చెడు నియమాన్ని ఉపయోగించండి.
\frac{3}{2}x+\frac{5}{2}x^{2}-3-x^{3}+2x^{2}-x+\left(x-1\right)^{3}-\frac{1}{2}\left(2x-8\right)
x^{3}-2x^{2}+x యొక్క వ్యతిరేకాన్ని కనుగొనాలంటే, ప్రతి పదం యొక్క వ్యతిరేకాన్ని కనుగొనండి.
\frac{3}{2}x+\frac{9}{2}x^{2}-3-x^{3}-x+\left(x-1\right)^{3}-\frac{1}{2}\left(2x-8\right)
\frac{9}{2}x^{2}ని పొందడం కోసం \frac{5}{2}x^{2} మరియు 2x^{2}ని జత చేయండి.
\frac{1}{2}x+\frac{9}{2}x^{2}-3-x^{3}+\left(x-1\right)^{3}-\frac{1}{2}\left(2x-8\right)
\frac{1}{2}xని పొందడం కోసం \frac{3}{2}x మరియు -xని జత చేయండి.
\frac{1}{2}x+\frac{9}{2}x^{2}-3-x^{3}+x^{3}-3x^{2}+3x-1-\frac{1}{2}\left(2x-8\right)
\left(x-1\right)^{3}ని విస్తరించడం కోసం ద్విపద సిద్ధాంతాన్ని \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} ఉపయోగించండి.
\frac{1}{2}x+\frac{9}{2}x^{2}-3-3x^{2}+3x-1-\frac{1}{2}\left(2x-8\right)
0ని పొందడం కోసం -x^{3} మరియు x^{3}ని జత చేయండి.
\frac{1}{2}x+\frac{3}{2}x^{2}-3+3x-1-\frac{1}{2}\left(2x-8\right)
\frac{3}{2}x^{2}ని పొందడం కోసం \frac{9}{2}x^{2} మరియు -3x^{2}ని జత చేయండి.
\frac{7}{2}x+\frac{3}{2}x^{2}-3-1-\frac{1}{2}\left(2x-8\right)
\frac{7}{2}xని పొందడం కోసం \frac{1}{2}x మరియు 3xని జత చేయండి.
\frac{7}{2}x+\frac{3}{2}x^{2}-4-\frac{1}{2}\left(2x-8\right)
-4ని పొందడం కోసం 1ని -3 నుండి వ్యవకలనం చేయండి.
\frac{7}{2}x+\frac{3}{2}x^{2}-4-x+4
2x-8తో -\frac{1}{2}ని గుణించడం కోసం పంచి యిచ్చెడు నియమాన్ని ఉపయోగించండి.
\frac{5}{2}x+\frac{3}{2}x^{2}-4+4
\frac{5}{2}xని పొందడం కోసం \frac{7}{2}x మరియు -xని జత చేయండి.
\frac{5}{2}x+\frac{3}{2}x^{2}
0ని పొందడం కోసం -4 మరియు 4ని కూడండి.