பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x-க்காகத் தீர்க்கவும் (சிக்கலான தீர்வு)
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

xx+x\times 4+6=0
பூஜ்ஜியத்தால் பிரிப்பது வரையறுக்கப்படவில்லை என்பதால் மாறி x ஆனது 0-க்குச் சமமாக இருக்க முடியாது. சமன்பாட்டின் இரு பக்கங்களையும் x-ஆல் பெருக்கவும்.
x^{2}+x\times 4+6=0
x மற்றும் x-ஐப் பெருக்கவும், தீர்வு x^{2}.
x^{2}+4x+6=0
ax^{2}+bx+c=0 என்ற வடிவத்தின் எல்லா சமன்பாடுகளையும் இருபடிச் சூத்திரத்தைப் பயன்படுத்தித் தீர்க்கலாம்: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. இருபடிச் சூத்திரம் இரண்டு தீர்வுகளை வழங்குகிறது, ± ஆனது கூட்டலாக இருக்கும் போது ஒன்று, அது கழித்தலாக இருக்கும் போது ஒன்று.
x=\frac{-4±\sqrt{4^{2}-4\times 6}}{2}
இந்தச் சமன்பாடு நிலையான வடிவத்தில் உள்ளது: குவாட்ரேட்டிக் சூத்திரம் \frac{-b±\sqrt{b^{2}-4ac}}{2a}-இல் ax^{2}+bx+c=0. a-க்குப் பதிலாக 1, b-க்குப் பதிலாக 4 மற்றும் c-க்குப் பதிலாக 6-ஐப் பதிலீடு செய்து, தீர்க்கவும்.
x=\frac{-4±\sqrt{16-4\times 6}}{2}
4-ஐ வர்க்கமாக்கவும்.
x=\frac{-4±\sqrt{16-24}}{2}
6-ஐ -4 முறை பெருக்கவும்.
x=\frac{-4±\sqrt{-8}}{2}
-24-க்கு 16-ஐக் கூட்டவும்.
x=\frac{-4±2\sqrt{2}i}{2}
-8-இன் வர்க்க மூலத்தை எடுக்கவும்.
x=\frac{-4+2\sqrt{2}i}{2}
இப்போது ± கூட்டலாக இருக்கும்போது .சமன்பாடு x=\frac{-4±2\sqrt{2}i}{2}-ஐத் தீர்க்கவும். 2i\sqrt{2}-க்கு -4-ஐக் கூட்டவும்.
x=-2+\sqrt{2}i
-4+2i\sqrt{2}-ஐ 2-ஆல் வகுக்கவும்.
x=\frac{-2\sqrt{2}i-4}{2}
± எதிர்மறை எணணாக இருக்கும்போது இப்போது சமன்பாடு x=\frac{-4±2\sqrt{2}i}{2}-ஐத் தீர்க்கவும். -4–இலிருந்து 2i\sqrt{2}–ஐக் கழிக்கவும்.
x=-\sqrt{2}i-2
-4-2i\sqrt{2}-ஐ 2-ஆல் வகுக்கவும்.
x=-2+\sqrt{2}i x=-\sqrt{2}i-2
இப்போது சமன்பாடு தீர்க்கப்பட்டது.
xx+x\times 4+6=0
பூஜ்ஜியத்தால் பிரிப்பது வரையறுக்கப்படவில்லை என்பதால் மாறி x ஆனது 0-க்குச் சமமாக இருக்க முடியாது. சமன்பாட்டின் இரு பக்கங்களையும் x-ஆல் பெருக்கவும்.
x^{2}+x\times 4+6=0
x மற்றும் x-ஐப் பெருக்கவும், தீர்வு x^{2}.
x^{2}+x\times 4=-6
இரு பக்கங்களில் இருந்தும் 6-ஐக் கழிக்கவும். எந்தவொரு மதிப்பையும் பூஜ்ஜியத்தில் இருந்து கழிக்கும் போது அதன் எதிர்மறை எண் கிடைக்கும்.
x^{2}+4x=-6
இதைப் போன்ற இருபடிச் சமன்பாடுகளை வர்க்கத்தைப் பூர்த்தி செய்வதன் மூலம் தீர்க்கலாம். வர்க்கத்தைப் பூர்த்தி செய்வதற்கு, சமன்பாடு முதலில் x^{2}+bx=c என்ற வடிவத்தில் இருக்க வேண்டும்.
x^{2}+4x+2^{2}=-6+2^{2}
2-ஐப் பெற, x உறுப்பின் ஈவான 4-ஐ 2-ஆல் வகுக்கவும். பிறகு 2-இன் வர்க்கத்தைச் சமன்பாட்டின் இரண்டு பக்கங்களிலும் சேர்க்கவும். இந்தப் படி சமன்பாட்டின் இடது பக்கத்தைச் சரியான வர்க்கமாக்குகிறது.
x^{2}+4x+4=-6+4
2-ஐ வர்க்கமாக்கவும்.
x^{2}+4x+4=-2
4-க்கு -6-ஐக் கூட்டவும்.
\left(x+2\right)^{2}=-2
காரணி x^{2}+4x+4. பொதுவாக, x^{2}+bx+c ஒரு சரியான வர்க்கமாக இருக்கும்போது, அது எப்போதும் \left(x+\frac{b}{2}\right)^{2} என காரணியாக இருக்கலாம்.
\sqrt{\left(x+2\right)^{2}}=\sqrt{-2}
சமன்பாட்டின் இரு பக்கங்களின் வர்க்க மூலத்தை எடுக்கவும்.
x+2=\sqrt{2}i x+2=-\sqrt{2}i
எளிமையாக்கவும்.
x=-2+\sqrt{2}i x=-\sqrt{2}i-2
சமன்பாட்டின் இரு பக்கங்களில் இருந்தும் 2-ஐக் கழிக்கவும்.