பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்
வினாடி வினா
Quadratic Equation

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

xx-1=3x
பூஜ்ஜியத்தால் பிரிப்பது வரையறுக்கப்படவில்லை என்பதால் மாறி x ஆனது 0-க்குச் சமமாக இருக்க முடியாது. சமன்பாட்டின் இரு பக்கங்களையும் x-ஆல் பெருக்கவும்.
x^{2}-1=3x
x மற்றும் x-ஐப் பெருக்கவும், தீர்வு x^{2}.
x^{2}-1-3x=0
இரு பக்கங்களில் இருந்தும் 3x-ஐக் கழிக்கவும்.
x^{2}-3x-1=0
ax^{2}+bx+c=0 என்ற வடிவத்தின் எல்லா சமன்பாடுகளையும் இருபடிச் சூத்திரத்தைப் பயன்படுத்தித் தீர்க்கலாம்: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. இருபடிச் சூத்திரம் இரண்டு தீர்வுகளை வழங்குகிறது, ± ஆனது கூட்டலாக இருக்கும் போது ஒன்று, அது கழித்தலாக இருக்கும் போது ஒன்று.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-1\right)}}{2}
இந்தச் சமன்பாடு நிலையான வடிவத்தில் உள்ளது: குவாட்ரேட்டிக் சூத்திரம் \frac{-b±\sqrt{b^{2}-4ac}}{2a}-இல் ax^{2}+bx+c=0. a-க்குப் பதிலாக 1, b-க்குப் பதிலாக -3 மற்றும் c-க்குப் பதிலாக -1-ஐப் பதிலீடு செய்து, தீர்க்கவும்.
x=\frac{-\left(-3\right)±\sqrt{9-4\left(-1\right)}}{2}
-3-ஐ வர்க்கமாக்கவும்.
x=\frac{-\left(-3\right)±\sqrt{9+4}}{2}
-1-ஐ -4 முறை பெருக்கவும்.
x=\frac{-\left(-3\right)±\sqrt{13}}{2}
4-க்கு 9-ஐக் கூட்டவும்.
x=\frac{3±\sqrt{13}}{2}
-3-க்கு எதிரில் இருப்பது 3.
x=\frac{\sqrt{13}+3}{2}
இப்போது ± கூட்டலாக இருக்கும்போது .சமன்பாடு x=\frac{3±\sqrt{13}}{2}-ஐத் தீர்க்கவும். \sqrt{13}-க்கு 3-ஐக் கூட்டவும்.
x=\frac{3-\sqrt{13}}{2}
± எதிர்மறை எணணாக இருக்கும்போது இப்போது சமன்பாடு x=\frac{3±\sqrt{13}}{2}-ஐத் தீர்க்கவும். 3–இலிருந்து \sqrt{13}–ஐக் கழிக்கவும்.
x=\frac{\sqrt{13}+3}{2} x=\frac{3-\sqrt{13}}{2}
இப்போது சமன்பாடு தீர்க்கப்பட்டது.
xx-1=3x
பூஜ்ஜியத்தால் பிரிப்பது வரையறுக்கப்படவில்லை என்பதால் மாறி x ஆனது 0-க்குச் சமமாக இருக்க முடியாது. சமன்பாட்டின் இரு பக்கங்களையும் x-ஆல் பெருக்கவும்.
x^{2}-1=3x
x மற்றும் x-ஐப் பெருக்கவும், தீர்வு x^{2}.
x^{2}-1-3x=0
இரு பக்கங்களில் இருந்தும் 3x-ஐக் கழிக்கவும்.
x^{2}-3x=1
இரண்டு பக்கங்களிலும் 1-ஐச் சேர்க்கவும். எந்தவொரு மதிப்பையும் பூஜ்ஜியத்துடன் கூட்டும் போது அதுவே கிடைக்கும்.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=1+\left(-\frac{3}{2}\right)^{2}
-\frac{3}{2}-ஐப் பெற, x உறுப்பின் ஈவான -3-ஐ 2-ஆல் வகுக்கவும். பிறகு -\frac{3}{2}-இன் வர்க்கத்தைச் சமன்பாட்டின் இரண்டு பக்கங்களிலும் சேர்க்கவும். இந்தப் படி சமன்பாட்டின் இடது பக்கத்தைச் சரியான வர்க்கமாக்குகிறது.
x^{2}-3x+\frac{9}{4}=1+\frac{9}{4}
பின்னத்தின் தொகுதி மற்றும் பகுதி ஆகிய இரண்டையும் வர்க்கமாக்குவதன் மூலம், -\frac{3}{2}-ஐ வர்க்கமாக்கவும்.
x^{2}-3x+\frac{9}{4}=\frac{13}{4}
\frac{9}{4}-க்கு 1-ஐக் கூட்டவும்.
\left(x-\frac{3}{2}\right)^{2}=\frac{13}{4}
காரணி x^{2}-3x+\frac{9}{4}. பொதுவாக, x^{2}+bx+c ஒரு சரியான வர்க்கமாக இருக்கும்போது, அது எப்போதும் \left(x+\frac{b}{2}\right)^{2} என காரணியாக இருக்கலாம்.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{13}{4}}
சமன்பாட்டின் இரு பக்கங்களின் வர்க்க மூலத்தை எடுக்கவும்.
x-\frac{3}{2}=\frac{\sqrt{13}}{2} x-\frac{3}{2}=-\frac{\sqrt{13}}{2}
எளிமையாக்கவும்.
x=\frac{\sqrt{13}+3}{2} x=\frac{3-\sqrt{13}}{2}
சமன்பாட்டின் இரு பக்கங்களிலும் \frac{3}{2}-ஐக் கூட்டவும்.