பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
x-க்காகத் தீர்க்கவும்
Tick mark Image
விளக்கப்படம்

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

x^{2}-4x-14=0
ax^{2}+bx+c=0 என்ற வடிவத்தின் எல்லா சமன்பாடுகளையும் இருபடிச் சூத்திரத்தைப் பயன்படுத்தித் தீர்க்கலாம்: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. இருபடிச் சூத்திரம் இரண்டு தீர்வுகளை வழங்குகிறது, ± ஆனது கூட்டலாக இருக்கும் போது ஒன்று, அது கழித்தலாக இருக்கும் போது ஒன்று.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-14\right)}}{2}
இந்தச் சமன்பாடு நிலையான வடிவத்தில் உள்ளது: குவாட்ரேட்டிக் சூத்திரம் \frac{-b±\sqrt{b^{2}-4ac}}{2a}-இல் ax^{2}+bx+c=0. a-க்குப் பதிலாக 1, b-க்குப் பதிலாக -4 மற்றும் c-க்குப் பதிலாக -14-ஐப் பதிலீடு செய்து, தீர்க்கவும்.
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-14\right)}}{2}
-4-ஐ வர்க்கமாக்கவும்.
x=\frac{-\left(-4\right)±\sqrt{16+56}}{2}
-14-ஐ -4 முறை பெருக்கவும்.
x=\frac{-\left(-4\right)±\sqrt{72}}{2}
56-க்கு 16-ஐக் கூட்டவும்.
x=\frac{-\left(-4\right)±6\sqrt{2}}{2}
72-இன் வர்க்க மூலத்தை எடுக்கவும்.
x=\frac{4±6\sqrt{2}}{2}
-4-க்கு எதிரில் இருப்பது 4.
x=\frac{6\sqrt{2}+4}{2}
இப்போது ± கூட்டலாக இருக்கும்போது .சமன்பாடு x=\frac{4±6\sqrt{2}}{2}-ஐத் தீர்க்கவும். 6\sqrt{2}-க்கு 4-ஐக் கூட்டவும்.
x=3\sqrt{2}+2
4+6\sqrt{2}-ஐ 2-ஆல் வகுக்கவும்.
x=\frac{4-6\sqrt{2}}{2}
± எதிர்மறை எணணாக இருக்கும்போது இப்போது சமன்பாடு x=\frac{4±6\sqrt{2}}{2}-ஐத் தீர்க்கவும். 4–இலிருந்து 6\sqrt{2}–ஐக் கழிக்கவும்.
x=2-3\sqrt{2}
4-6\sqrt{2}-ஐ 2-ஆல் வகுக்கவும்.
x=3\sqrt{2}+2 x=2-3\sqrt{2}
இப்போது சமன்பாடு தீர்க்கப்பட்டது.
x^{2}-4x-14=0
இதைப் போன்ற இருபடிச் சமன்பாடுகளை வர்க்கத்தைப் பூர்த்தி செய்வதன் மூலம் தீர்க்கலாம். வர்க்கத்தைப் பூர்த்தி செய்வதற்கு, சமன்பாடு முதலில் x^{2}+bx=c என்ற வடிவத்தில் இருக்க வேண்டும்.
x^{2}-4x-14-\left(-14\right)=-\left(-14\right)
சமன்பாட்டின் இரு பக்கங்களிலும் 14-ஐக் கூட்டவும்.
x^{2}-4x=-\left(-14\right)
-14-ஐ அதிலிருந்தே கழித்தல் 0-ஐ தரும்.
x^{2}-4x=14
0–இலிருந்து -14–ஐக் கழிக்கவும்.
x^{2}-4x+\left(-2\right)^{2}=14+\left(-2\right)^{2}
-2-ஐப் பெற, x உறுப்பின் ஈவான -4-ஐ 2-ஆல் வகுக்கவும். பிறகு -2-இன் வர்க்கத்தைச் சமன்பாட்டின் இரண்டு பக்கங்களிலும் சேர்க்கவும். இந்தப் படி சமன்பாட்டின் இடது பக்கத்தைச் சரியான வர்க்கமாக்குகிறது.
x^{2}-4x+4=14+4
-2-ஐ வர்க்கமாக்கவும்.
x^{2}-4x+4=18
4-க்கு 14-ஐக் கூட்டவும்.
\left(x-2\right)^{2}=18
காரணி x^{2}-4x+4. பொதுவாக, x^{2}+bx+c ஒரு சரியான வர்க்கமாக இருக்கும்போது, அது எப்போதும் \left(x+\frac{b}{2}\right)^{2} என காரணியாக இருக்கலாம்.
\sqrt{\left(x-2\right)^{2}}=\sqrt{18}
சமன்பாட்டின் இரு பக்கங்களின் வர்க்க மூலத்தை எடுக்கவும்.
x-2=3\sqrt{2} x-2=-3\sqrt{2}
எளிமையாக்கவும்.
x=3\sqrt{2}+2 x=2-3\sqrt{2}
சமன்பாட்டின் இரு பக்கங்களிலும் 2-ஐக் கூட்டவும்.