m-க்காகத் தீர்க்கவும் (சிக்கலான தீர்வு)
m=-\frac{-2x^{2}+2x-3}{x^{2}+1}
x\neq -i\text{ and }x\neq i
m-க்காகத் தீர்க்கவும்
m=-\frac{-2x^{2}+2x-3}{x^{2}+1}
x-க்காகத் தீர்க்கவும் (சிக்கலான தீர்வு)
\left\{\begin{matrix}x=\frac{\sqrt{-m^{2}+5m-5}-1}{m-2}\text{; }x=-\frac{\sqrt{-m^{2}+5m-5}+1}{m-2}\text{, }&m\neq 2\\x=\frac{1}{2}\text{, }&m=2\end{matrix}\right.
x-க்காகத் தீர்க்கவும்
\left\{\begin{matrix}x=\frac{\sqrt{-m^{2}+5m-5}-1}{m-2}\text{; }x=-\frac{\sqrt{-m^{2}+5m-5}+1}{m-2}\text{, }&m\neq 2\text{ and }m\geq \frac{5-\sqrt{5}}{2}\text{ and }m\leq \frac{\sqrt{5}+5}{2}\\x=\frac{1}{2}\text{, }&m=2\end{matrix}\right.
விளக்கப்படம்
பகிர்
நகலகத்துக்கு நகலெடுக்கப்பட்டது
mx^{2}-2\left(x-1\right)x+m=3
இரண்டு பக்கங்களிலும் 3-ஐச் சேர்க்கவும். எந்தவொரு மதிப்பையும் பூஜ்ஜியத்துடன் கூட்டும் போது அதுவே கிடைக்கும்.
mx^{2}+\left(-2x+2\right)x+m=3
-2-ஐ x-1-ஆல் பெருக்க, பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
mx^{2}-2x^{2}+2x+m=3
-2x+2-ஐ x-ஆல் பெருக்க, பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
mx^{2}+2x+m=3+2x^{2}
இரண்டு பக்கங்களிலும் 2x^{2}-ஐச் சேர்க்கவும்.
mx^{2}+m=3+2x^{2}-2x
இரு பக்கங்களில் இருந்தும் 2x-ஐக் கழிக்கவும்.
\left(x^{2}+1\right)m=3+2x^{2}-2x
m உள்ள எல்லா உறுப்புகளையும் இணைக்கவும்.
\left(x^{2}+1\right)m=2x^{2}-2x+3
சமன்பாடு நிலையான வடிவத்தில் உள்ளது.
\frac{\left(x^{2}+1\right)m}{x^{2}+1}=\frac{2x^{2}-2x+3}{x^{2}+1}
இரு பக்கங்களையும் x^{2}+1-ஆல் வகுக்கவும்.
m=\frac{2x^{2}-2x+3}{x^{2}+1}
x^{2}+1-ஆல் வகுத்தல் x^{2}+1-ஆல் பெருக்குவதைச் செயல்நீக்கும்.
mx^{2}-2\left(x-1\right)x+m=3
இரண்டு பக்கங்களிலும் 3-ஐச் சேர்க்கவும். எந்தவொரு மதிப்பையும் பூஜ்ஜியத்துடன் கூட்டும் போது அதுவே கிடைக்கும்.
mx^{2}+\left(-2x+2\right)x+m=3
-2-ஐ x-1-ஆல் பெருக்க, பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
mx^{2}-2x^{2}+2x+m=3
-2x+2-ஐ x-ஆல் பெருக்க, பங்கீட்டுக் குணத்தைப் பயன்படுத்தவும்.
mx^{2}+2x+m=3+2x^{2}
இரண்டு பக்கங்களிலும் 2x^{2}-ஐச் சேர்க்கவும்.
mx^{2}+m=3+2x^{2}-2x
இரு பக்கங்களில் இருந்தும் 2x-ஐக் கழிக்கவும்.
\left(x^{2}+1\right)m=3+2x^{2}-2x
m உள்ள எல்லா உறுப்புகளையும் இணைக்கவும்.
\left(x^{2}+1\right)m=2x^{2}-2x+3
சமன்பாடு நிலையான வடிவத்தில் உள்ளது.
\frac{\left(x^{2}+1\right)m}{x^{2}+1}=\frac{2x^{2}-2x+3}{x^{2}+1}
இரு பக்கங்களையும் x^{2}+1-ஆல் வகுக்கவும்.
m=\frac{2x^{2}-2x+3}{x^{2}+1}
x^{2}+1-ஆல் வகுத்தல் x^{2}+1-ஆல் பெருக்குவதைச் செயல்நீக்கும்.
எடுத்துக்காட்டுகள்
இருபடி சமன்பாடு
{ x } ^ { 2 } - 4 x - 5 = 0
திரிகோணமதி
4 \sin \theta \cos \theta = 2 \sin \theta
ஒருபடி சமன்பாடு
y = 3x + 4
எண் கணிதம்
699 * 533
அணி
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
உடனிகழ்வு சமன்பாடு
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
வகைக்கெழு
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
தொகையீடு
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
வரம்புகள்
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}