பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
காரணி
Tick mark Image
மதிப்பிடவும்
Tick mark Image
வினாடி வினா
Polynomial

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

f\left(f-1\right)
f-ஐக் காரணிப்படுத்தவும்.
f^{2}-f=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) உருவாக்கத்தைப் பயன்படுத்தி குவாட்ரேட்டிக் மூவுறுப்பைக் காரணிப்படுத்தலாம், இதில் x_{1} மற்றும் x_{2} ஆனது குவாட்ரேட்டிக் சமன்பாடு ax^{2}+bx+c=0-இன் தீர்வுகளாகும்.
f=\frac{-\left(-1\right)±\sqrt{1}}{2}
ax^{2}+bx+c=0 என்ற வடிவத்தின் எல்லா சமன்பாடுகளையும் இருபடிச் சூத்திரத்தைப் பயன்படுத்தித் தீர்க்கலாம்: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. இருபடிச் சூத்திரம் இரண்டு தீர்வுகளை வழங்குகிறது, ± ஆனது கூட்டலாக இருக்கும் போது ஒன்று, அது கழித்தலாக இருக்கும் போது ஒன்று.
f=\frac{-\left(-1\right)±1}{2}
1-இன் வர்க்க மூலத்தை எடுக்கவும்.
f=\frac{1±1}{2}
-1-க்கு எதிரில் இருப்பது 1.
f=\frac{2}{2}
இப்போது ± கூட்டலாக இருக்கும்போது .சமன்பாடு f=\frac{1±1}{2}-ஐத் தீர்க்கவும். 1-க்கு 1-ஐக் கூட்டவும்.
f=1
2-ஐ 2-ஆல் வகுக்கவும்.
f=\frac{0}{2}
± எதிர்மறை எணணாக இருக்கும்போது இப்போது சமன்பாடு f=\frac{1±1}{2}-ஐத் தீர்க்கவும். 1–இலிருந்து 1–ஐக் கழிக்கவும்.
f=0
0-ஐ 2-ஆல் வகுக்கவும்.
f^{2}-f=\left(f-1\right)f
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)-ஐப் பயன்படுத்தி அசல் கோவையைக் காரணிப்படுத்தவும். x_{1}-க்கு 1-ஐயும், x_{2}-க்கு 0-ஐயும் பதிலீடு செய்யவும்.