பிரதான உள்ளடக்கத்தைத் தவிர்க்கவும்
காரணி
Tick mark Image
மதிப்பிடவும்
Tick mark Image

வலைத் தேடலில் இருந்து ஒரே மாதியான கணக்குகள்

பகிர்

p+q=-1 pq=1\left(-12\right)=-12
குழுவாக்குதலின்படி கோவையைக் காரணிப்படுத்தவும். முதலில், கோவையை a^{2}+pa+qa-12-ஆக மீண்டும் எழுத வேண்டும். p மற்றும் q-ஐக் கண்டறிய, தீர்ப்பதற்கான அமைப்பை அமைக்கவும்.
1,-12 2,-6 3,-4
pq எதிர்மறையாக இருப்பதால், p மற்றும் q எதிரெதிர் குறிகளைக் கொண்டிருக்கும். p+q எதிர்மறையாக இருப்பதால், நேர்மறை எண்ணை விட எதிர்மறை எண் பெரிய தனிமதிப்பைக் கொண்டிருக்கும். -12 மதிப்பைத் தரும் எல்லா முழு எண் ஜோடிகளையும் பட்டியலிடவும்.
1-12=-11 2-6=-4 3-4=-1
ஒவ்வொரு ஜோடிக்குமான கூட்டலைக் கணக்கிடவும்.
p=-4 q=3
-1 என்ற கூட்டல் மதிப்பைத் தரும் ஜோடிதான் தீர்வு.
\left(a^{2}-4a\right)+\left(3a-12\right)
a^{2}-a-12 என்பதை \left(a^{2}-4a\right)+\left(3a-12\right) என மீண்டும் எழுதவும்.
a\left(a-4\right)+3\left(a-4\right)
முதல் குழுவில் a மற்றும் இரண்டாவது குழுவில் 3-ஐக் காரணிப்படுத்தவும்.
\left(a-4\right)\left(a+3\right)
பரவல் பண்பைப் பயன்படுத்தி a-4 என்ற பொதுவான சொல்லைக் காரணிப்படுத்தவும்.
a^{2}-a-12=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) உருவாக்கத்தைப் பயன்படுத்தி குவாட்ரேட்டிக் மூவுறுப்பைக் காரணிப்படுத்தலாம், இதில் x_{1} மற்றும் x_{2} ஆனது குவாட்ரேட்டிக் சமன்பாடு ax^{2}+bx+c=0-இன் தீர்வுகளாகும்.
a=\frac{-\left(-1\right)±\sqrt{1-4\left(-12\right)}}{2}
ax^{2}+bx+c=0 என்ற வடிவத்தின் எல்லா சமன்பாடுகளையும் இருபடிச் சூத்திரத்தைப் பயன்படுத்தித் தீர்க்கலாம்: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. இருபடிச் சூத்திரம் இரண்டு தீர்வுகளை வழங்குகிறது, ± ஆனது கூட்டலாக இருக்கும் போது ஒன்று, அது கழித்தலாக இருக்கும் போது ஒன்று.
a=\frac{-\left(-1\right)±\sqrt{1+48}}{2}
-12-ஐ -4 முறை பெருக்கவும்.
a=\frac{-\left(-1\right)±\sqrt{49}}{2}
48-க்கு 1-ஐக் கூட்டவும்.
a=\frac{-\left(-1\right)±7}{2}
49-இன் வர்க்க மூலத்தை எடுக்கவும்.
a=\frac{1±7}{2}
-1-க்கு எதிரில் இருப்பது 1.
a=\frac{8}{2}
இப்போது ± கூட்டலாக இருக்கும்போது .சமன்பாடு a=\frac{1±7}{2}-ஐத் தீர்க்கவும். 7-க்கு 1-ஐக் கூட்டவும்.
a=4
8-ஐ 2-ஆல் வகுக்கவும்.
a=-\frac{6}{2}
± எதிர்மறை எணணாக இருக்கும்போது இப்போது சமன்பாடு a=\frac{1±7}{2}-ஐத் தீர்க்கவும். 1–இலிருந்து 7–ஐக் கழிக்கவும்.
a=-3
-6-ஐ 2-ஆல் வகுக்கவும்.
a^{2}-a-12=\left(a-4\right)\left(a-\left(-3\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)-ஐப் பயன்படுத்தி அசல் கோவையைக் காரணிப்படுத்தவும். x_{1}-க்கு 4-ஐயும், x_{2}-க்கு -3-ஐயும் பதிலீடு செய்யவும்.
a^{2}-a-12=\left(a-4\right)\left(a+3\right)
படிவம் p-\left(-q\right)-இன் கோவைகள் அனைத்தையும் p+q-க்கு எளிமையாக்கவும்.