காரணி
3\left(3x^{2}-2x+5\right)
மதிப்பிடவும்
9x^{2}-6x+15
விளக்கப்படம்
பகிர்
நகலகத்துக்கு நகலெடுக்கப்பட்டது
3\left(3x^{2}-2x+5\right)
3-ஐக் காரணிப்படுத்தவும். 3x^{2}-2x+5 அடுக்குக்கோவையில் பிரிப்பு வர்க்கங்கள் எதுவும் இல்லாததால் அதனைப் பின்னமாக்க முடியவில்லை.
9x^{2}-6x+15=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) உருவாக்கத்தைப் பயன்படுத்தி குவாட்ரேட்டிக் மூவுறுப்பைக் காரணிப்படுத்தலாம், இதில் x_{1} மற்றும் x_{2} ஆனது குவாட்ரேட்டிக் சமன்பாடு ax^{2}+bx+c=0-இன் தீர்வுகளாகும்.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 9\times 15}}{2\times 9}
ax^{2}+bx+c=0 என்ற வடிவத்தின் எல்லா சமன்பாடுகளையும் இருபடிச் சூத்திரத்தைப் பயன்படுத்தித் தீர்க்கலாம்: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. இருபடிச் சூத்திரம் இரண்டு தீர்வுகளை வழங்குகிறது, ± ஆனது கூட்டலாக இருக்கும் போது ஒன்று, அது கழித்தலாக இருக்கும் போது ஒன்று.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 9\times 15}}{2\times 9}
-6-ஐ வர்க்கமாக்கவும்.
x=\frac{-\left(-6\right)±\sqrt{36-36\times 15}}{2\times 9}
9-ஐ -4 முறை பெருக்கவும்.
x=\frac{-\left(-6\right)±\sqrt{36-540}}{2\times 9}
15-ஐ -36 முறை பெருக்கவும்.
x=\frac{-\left(-6\right)±\sqrt{-504}}{2\times 9}
-540-க்கு 36-ஐக் கூட்டவும்.
9x^{2}-6x+15
எதிர்மறை எண்ணின் கனமூலம் அசல் புலத்தில் வரையறுக்கப்படவில்லை என்பதால், தீர்வுகள் கிடைக்காது. இருபடிப் பல்லுறுப்பானைக் காரணிப்படுத்த முடியாது.
எடுத்துக்காட்டுகள்
இருபடி சமன்பாடு
{ x } ^ { 2 } - 4 x - 5 = 0
திரிகோணமதி
4 \sin \theta \cos \theta = 2 \sin \theta
ஒருபடி சமன்பாடு
y = 3x + 4
எண் கணிதம்
699 * 533
அணி
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
உடனிகழ்வு சமன்பாடு
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
வகைக்கெழு
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
தொகையீடு
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
வரம்புகள்
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}