w-க்காகத் தீர்க்கவும்
w = \frac{5}{3} = 1\frac{2}{3} \approx 1.666666667
பகிர்
நகலகத்துக்கு நகலெடுக்கப்பட்டது
9w^{2}+25-30w=0
இரு பக்கங்களில் இருந்தும் 30w-ஐக் கழிக்கவும்.
9w^{2}-30w+25=0
பல்லுறுப்புக் கோவையை வழக்கமான வடிவத்தில் இடுவதற்கு அதை மீண்டும் ஒழுங்குபடுத்தவும். உறுப்புகளை மிகஅதிக முதல் மிகக்குறைந்த அடுக்கு என்ற வரிசையில் இடவும்.
a+b=-30 ab=9\times 25=225
சமன்பாட்டைத் தீர்க்க, குழுவாக்கல் மூலம் இடது கை பக்கத்தைக் காரணிப்படுத்தவும். முதலில், இடது கை பக்கத்தை 9w^{2}+aw+bw+25-ஆக மீண்டும் எழுதவும். a மற்றும் b-ஐக் கண்டறிய, தீர்ப்பதற்கான அமைப்பை அமைக்கவும்.
-1,-225 -3,-75 -5,-45 -9,-25 -15,-15
ab நேர்மறையாக இருப்பதால், a மற்றும் b ஒரே குறியைக் கொண்டிருக்கும். a+b எதிர்மறையாக இருப்பதால், a மற்றும் b என இரண்டும் எதிர்மறையாக இருக்கும். 225 மதிப்பைத் தரும் எல்லா முழு எண் ஜோடிகளையும் பட்டியலிடவும்.
-1-225=-226 -3-75=-78 -5-45=-50 -9-25=-34 -15-15=-30
ஒவ்வொரு ஜோடிக்குமான கூட்டலைக் கணக்கிடவும்.
a=-15 b=-15
-30 என்ற கூட்டல் மதிப்பைத் தரும் ஜோடிதான் தீர்வு.
\left(9w^{2}-15w\right)+\left(-15w+25\right)
9w^{2}-30w+25 என்பதை \left(9w^{2}-15w\right)+\left(-15w+25\right) என மீண்டும் எழுதவும்.
3w\left(3w-5\right)-5\left(3w-5\right)
முதல் குழுவில் 3w மற்றும் இரண்டாவது குழுவில் -5-ஐக் காரணிப்படுத்தவும்.
\left(3w-5\right)\left(3w-5\right)
பரவல் பண்பைப் பயன்படுத்தி 3w-5 என்ற பொதுவான சொல்லைக் காரணிப்படுத்தவும்.
\left(3w-5\right)^{2}
ஈருறுப்பு வர்க்கமாக மீண்டும் எழுதவும்.
w=\frac{5}{3}
சமன்பாட்டுத் தீர்வைக் கண்டறிய, 3w-5=0-ஐத் தீர்க்கவும்.
9w^{2}+25-30w=0
இரு பக்கங்களில் இருந்தும் 30w-ஐக் கழிக்கவும்.
9w^{2}-30w+25=0
ax^{2}+bx+c=0 என்ற வடிவத்தின் எல்லா சமன்பாடுகளையும் இருபடிச் சூத்திரத்தைப் பயன்படுத்தித் தீர்க்கலாம்: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. இருபடிச் சூத்திரம் இரண்டு தீர்வுகளை வழங்குகிறது, ± ஆனது கூட்டலாக இருக்கும் போது ஒன்று, அது கழித்தலாக இருக்கும் போது ஒன்று.
w=\frac{-\left(-30\right)±\sqrt{\left(-30\right)^{2}-4\times 9\times 25}}{2\times 9}
இந்தச் சமன்பாடு நிலையான வடிவத்தில் உள்ளது: குவாட்ரேட்டிக் சூத்திரம் \frac{-b±\sqrt{b^{2}-4ac}}{2a}-இல் ax^{2}+bx+c=0. a-க்குப் பதிலாக 9, b-க்குப் பதிலாக -30 மற்றும் c-க்குப் பதிலாக 25-ஐப் பதிலீடு செய்து, தீர்க்கவும்.
w=\frac{-\left(-30\right)±\sqrt{900-4\times 9\times 25}}{2\times 9}
-30-ஐ வர்க்கமாக்கவும்.
w=\frac{-\left(-30\right)±\sqrt{900-36\times 25}}{2\times 9}
9-ஐ -4 முறை பெருக்கவும்.
w=\frac{-\left(-30\right)±\sqrt{900-900}}{2\times 9}
25-ஐ -36 முறை பெருக்கவும்.
w=\frac{-\left(-30\right)±\sqrt{0}}{2\times 9}
-900-க்கு 900-ஐக் கூட்டவும்.
w=-\frac{-30}{2\times 9}
0-இன் வர்க்க மூலத்தை எடுக்கவும்.
w=\frac{30}{2\times 9}
-30-க்கு எதிரில் இருப்பது 30.
w=\frac{30}{18}
9-ஐ 2 முறை பெருக்கவும்.
w=\frac{5}{3}
6-ஐ பிரித்தல் மற்றும் ரத்துசெய்வதன் மூலம் பின்னம் \frac{30}{18}-ஐ குறைந்த படிக்கு குறைக்கவும்.
9w^{2}+25-30w=0
இரு பக்கங்களில் இருந்தும் 30w-ஐக் கழிக்கவும்.
9w^{2}-30w=-25
இரு பக்கங்களில் இருந்தும் 25-ஐக் கழிக்கவும். எந்தவொரு மதிப்பையும் பூஜ்ஜியத்தில் இருந்து கழிக்கும் போது அதன் எதிர்மறை எண் கிடைக்கும்.
\frac{9w^{2}-30w}{9}=-\frac{25}{9}
இரு பக்கங்களையும் 9-ஆல் வகுக்கவும்.
w^{2}+\left(-\frac{30}{9}\right)w=-\frac{25}{9}
9-ஆல் வகுத்தல் 9-ஆல் பெருக்குவதைச் செயல்நீக்கும்.
w^{2}-\frac{10}{3}w=-\frac{25}{9}
3-ஐ பிரித்தல் மற்றும் ரத்துசெய்வதன் மூலம் பின்னம் \frac{-30}{9}-ஐ குறைந்த படிக்கு குறைக்கவும்.
w^{2}-\frac{10}{3}w+\left(-\frac{5}{3}\right)^{2}=-\frac{25}{9}+\left(-\frac{5}{3}\right)^{2}
-\frac{5}{3}-ஐப் பெற, x உறுப்பின் ஈவான -\frac{10}{3}-ஐ 2-ஆல் வகுக்கவும். பிறகு -\frac{5}{3}-இன் வர்க்கத்தைச் சமன்பாட்டின் இரண்டு பக்கங்களிலும் சேர்க்கவும். இந்தப் படி சமன்பாட்டின் இடது பக்கத்தைச் சரியான வர்க்கமாக்குகிறது.
w^{2}-\frac{10}{3}w+\frac{25}{9}=\frac{-25+25}{9}
பின்னத்தின் தொகுதி மற்றும் பகுதி ஆகிய இரண்டையும் வர்க்கமாக்குவதன் மூலம், -\frac{5}{3}-ஐ வர்க்கமாக்கவும்.
w^{2}-\frac{10}{3}w+\frac{25}{9}=0
பொதுவான பகுதி எண்ணைக் கண்டுபிடித்து, தொகுதி எண்களைக் கூட்டுவதன் மூலம், \frac{25}{9} உடன் -\frac{25}{9}-ஐக் கூட்டவும். பிறகு சாத்தியம் என்றால், பின்னத்தை மிகக்குறைந்த உறுப்புகளுக்குக் குறைக்கவும்.
\left(w-\frac{5}{3}\right)^{2}=0
காரணி w^{2}-\frac{10}{3}w+\frac{25}{9}. பொதுவாக, x^{2}+bx+c ஒரு சரியான வர்க்கமாக இருக்கும்போது, அது எப்போதும் \left(x+\frac{b}{2}\right)^{2} என காரணியாக இருக்கலாம்.
\sqrt{\left(w-\frac{5}{3}\right)^{2}}=\sqrt{0}
சமன்பாட்டின் இரு பக்கங்களின் வர்க்க மூலத்தை எடுக்கவும்.
w-\frac{5}{3}=0 w-\frac{5}{3}=0
எளிமையாக்கவும்.
w=\frac{5}{3} w=\frac{5}{3}
சமன்பாட்டின் இரு பக்கங்களிலும் \frac{5}{3}-ஐக் கூட்டவும்.
w=\frac{5}{3}
இப்போது சமன்பாடு தீர்க்கப்பட்டது. தீர்வுகள் ஒன்றுதான்.
எடுத்துக்காட்டுகள்
இருபடி சமன்பாடு
{ x } ^ { 2 } - 4 x - 5 = 0
திரிகோணமதி
4 \sin \theta \cos \theta = 2 \sin \theta
ஒருபடி சமன்பாடு
y = 3x + 4
எண் கணிதம்
699 * 533
அணி
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
உடனிகழ்வு சமன்பாடு
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
வகைக்கெழு
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
தொகையீடு
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
வரம்புகள்
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}